123
Views
0
CrossRef citations to date
0
Altmetric
Articles

Influence of LES Inflow Conditions on Simulations of a Piloted Diffusion Flame

ORCID Icon, ORCID Icon, ORCID Icon &
Pages 776-790 | Received 27 Nov 2023, Accepted 14 Jun 2024, Published online: 04 Jul 2024

References

  • Barlow, R. S., and J. H. Frank. Jan. 1998. “Effects of Turbulence on Species Mass Fractions in Methane/Air Jet Flames.” Symposium (International) on Combustion 27 (1): 1087–1095. doi:10.1016/S0082-0784(98)80510-9.
  • Bertels, A., B. Kober, A. Rittler, and A. Kempf. 2019. “Large-Eddy Simulation of Sandia Flame D with Efficient Explicit Filtering.” Flow, Turbulence and Combustion, 887–907. doi:10.1007/s10494-018-9997-0.
  • Ciottoli, P. P., et al. 2019. “Large Eddy Simulation on the Effects of Pressure on Syngas/Air Turbulent Nonpremixed Jet Flames.” Combustion Science and Technology, 1–34. doi:10.1080/00102202.2019.1632300.
  • De Santis, A., A. G. Clements, A. Pranzitelli, D. B. Ingham, and M. Pourkashanian. Dec. 2020. “Assessment of the Impact of Subgrid-Scale Stress Models and Mesh Resolution on the LES of a Partially-Premixed Swirling Flame.” Fuel 281: 118620. doi:10.1016/j.fuel.2020.118620.
  • Dhamankar, N. S., G. A. Blaisdell, and A. S. Lyrintzis. 2018. “Overview of Turbulent Inflow Boundary Conditions for Large-Eddy Simulations.” AIAA Journal 56 (4): 1317–1334. doi:10.2514/1.J055528.
  • Druault, P., et al. Mar. 2004. “Generation of Three-Dimensional Turbulent Inlet Conditions for Large-Eddy Simulation.” AIAA Journal 42 (3): 447–456. doi:10.2514/1.3946.
  • Esclapez, L., et al. Jul. 2017. “Fuel Effects on Lean Blow-out in a Realistic gas Turbine Combustor.” Combustion and Flame 181: 82–99. doi:10.1016/j.combustflame.2017.02.035.
  • Ferraris, S. A., and J. X. Wen. Dec. 2008. “LES of the Sandia Flame D Using Laminar Flamelet Decomposition for Conditional Source-Term Estimation.” Flow, Turbulence and Combustion 81 (4): 609–639. doi:10.1007/s10494-008-9158-y.
  • Glaze, D. J., and S. H. Frankel. 2003. “Stochastic Inlet Conditions for Large-Eddy Simulation of a Fully Turbulent Jet.” AIAA Journal 41 (6): 1064–1073. doi:10.2514/2.2073.
  • Ihme, M., and H. Pitsch. Oct. 2008. “Prediction of Extinction and Reignition in Nonpremixed Turbulent Flames Using a Flamelet/Progress Variable Model: 1. A Priori Study and Presumed PDF Closure.” Combustion and Flame 155 (1): 70–89. doi:10.1016/j.combustflame.2008.04.001.
  • Jaravel, T., E. Riber, B. Cuenot, and P. Pepiot. 2018. “Prediction of Flame Structure and Pollutant Formation of Sandia Flame D Using Large Eddy Simulation with Direct Integration of Chemical Kinetics.” Combustion and Flame 188: 180–198. doi:10.1016/j.combustflame.2017.08.028.
  • Jarrin, N., S. Benhamadouche, D. Laurence, and R. Prosser. Aug. 2006. “A Synthetic-Eddy-Method for Generating Inflow Conditions for Large-Eddy Simulations.” International Journal of Heat and Fluid Flow 27 (4): 585–593. doi:10.1016/j.ijheatfluidflow.2006.02.006.
  • Kemenov, K. A., H. Wang, and S. B. Pope. 2012. “Modelling Effects of Subgrid-Scale Mixture Fraction Variance in LES of a Piloted Diffusion Flame.” Combustion Theory and Modelling 16 (4): 611–638. doi:10.1080/13647830.2011.645881.
  • Kemenov, K. A., H. Wang, and S. B. Pope. Jun. 2012. “Turbulence Resolution Scale Dependence in Large-Eddy Simulations of a Jet Flame.” Flow Turbulence Combust 88 (4): 529–561. doi:10.1007/s10494-011-9380-x.
  • Klein, M., A. Sadiki, and J. Janicka. Apr. 2003. “A Digital Filter Based Generation of Inflow Data for Spatially Developing Direct Numerical or Large Eddy Simulations.” Journal of Computational Physics 186 (2): 652–665. doi:10.1016/S0021-9991(03)00090-1.
  • Kornev, N., and E. Hassel. 2007b. “Method of Random Spots for Generation of Synthetic Inhomogeneous Turbulent Fields with Prescribed Autocorrelation Functions.” Communications in Numerical Methods in Engineering 23 (1): 35–43. doi:10.1002/cnm.880.
  • Kornev, N., and E. Hassel. Jun. 2007a. “Synthesis of Homogeneous Anisotropic Divergence-Free Turbulent Fields with Prescribed Second-Order Statistics by Vortex Dipoles.” Physics of Fluids 19 (6): 068101. doi:10.1063/1.2738607.
  • Kornev, N., H. Kröger, J. Turnow, and E. Hassel. Dec. 2007. “Synthesis of Artificial Turbulent Fields with Prescribed Second-Order Statistics Using the Random-Spot Method.” PAMM 7 (1): 2100047–2100048. doi:10.1002/pamm.200700460.
  • Li, M., X. Chen, and X. Ruan. Mar. 2020. “Investigation of Flow Structure and Heat Transfer Enhancement in Rectangular Channels with Dimples and Protrusions Using Large Eddy Simulation.” International Journal of Thermal Sciences 149: 106207. doi:10.1016/j.ijthermalsci.2019.106207.
  • Lund, T. S., X. Wu, and K. D. Squires. Mar. 1998. “Generation of Turbulent Inflow Data for Spatially-Developing Boundary Layer Simulations.” Journal of Computational Physics 140 (2): 233–258. doi:10.1006/jcph.1998.5882.
  • Ma, M. C., M. Talei, and R. D. Sandberg. 2020. “Direct Numerical Simulation of Turbulent Premixed jet Flames: Influence of Inflow Boundary Conditions.” Combustion and Flame 213: 240–254. doi:10.1016/j.combustflame.2019.11.040.
  • Miranda, F. C., P. J. Coelho, J. Ströhle, and J. Janicka. 2020. “Large-eddy Simulation of a Bluff-Body Stabilised Nonpremixed Flame with Radiation Heat Transfer.” Combustion Theory and Modelling 7830), doi:10.1080/13647830.2020.1727017.
  • Mukha, T., and M. Liefvendahl. Jan. 2018. “Eddylicious: A Python Package for Turbulent Inflow Generation.” SoftwareX 7: 112–114. doi:10.1016/j.softx.2018.04.001.
  • Mukha, T., and M. Liefvendahl. Oct. 2017. “The Generation of Turbulent Inflow Boundary Conditions Using Precursor Channel Flow Simulations.” Computers & Fluids 156: 21–33. doi:10.1016/j.compfluid.2017.06.020.
  • Müller, H., F. Ferraro, and M. Pfitzner. 2013. “Implementation of a Steady Laminar Flamelet Model for non-Premixed Combustion in LES and RANS Simulations,” Presented at the 8th international OpenFOAM workshop, jeju, Korea, p. 12.
  • Pierce, C. D., and P. Moin. Apr. 2004. “Progress-variable Approach for Large-Eddy Simulation of non-Premixed Turbulent Combustion.” Journal of Fluid Mechanics 504 (3): 73–97. doi:10.1017/S0022112004008213.
  • Pitsch, H. 1998. “FlameMaster: A C++ Computer Program for 0D Combustion and 1D Laminar Flame Calculations.”
  • Popp, S., et al. 2015. “LES Flamelet-Progress Variable Modeling and Measurements of a Turbulent Partially-Premixed Dimethyl Ether Jet Flame.” Combustion and Flame 162 (8): 3016–3029. doi:10.1016/j.combustflame.2015.05.004.
  • Rovira, M., K. Engvall, and C. Duwig. 2020. “Review and Numerical Investigation of the Mean Flow Features of a Round Turbulent jet in Counterflow.” Physics of Fluids 32 (4), doi:10.1063/5.0003239.
  • Schlüter, J. U., H. Pitsch, and P. Moin. 2004. “Large Eddy Simulation Inflow Conditions for Coupling with Reynolds-Averaged Flow Solvers.” AIAA Journal 42 (3): 478–484. doi:10.2514/1.3488.
  • Schneider, Ch., A. Dreizler, J. Janicka, and E. P. Hassel. Oct. 2003. “Flow Field Measurements of Stable and Locally Extinguishing Hydrocarbon-Fuelled jet Flames.” Combustion and Flame 135 (1): 185–190. doi:10.1016/S0010-2180(03)00150-0.
  • See, Y. C., and M. Ihme. 2015. “Large Eddy Simulation of a Partially-Premixed gas Turbine Model Combustor.” Proceedings of the Combustion Institute 35 (2): 1225–1234. doi:10.1016/j.proci.2014.08.006.
  • Smagorinsky, J. Mar. 1963. “General Circulation Experiments with the Primitive Equations: I. the Basic Experiment.” Monthly Weather Review 91 (3): 99–164. doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.
  • Smith, G. P., et al. “The GRI 3.0 chemical kinetic mechanism.” [Online]. Available: http://www.me.berkeley.edu/gri_mech/.
  • Tabor, G. R., and M. H. Baba-Ahmadi. Apr. 2010. “Inlet Conditions for Large Eddy Simulation: A Review.” Computers & Fluids 39 (4): 553–567. doi:10.1016/j.compfluid.2009.10.007.
  • Vreman, A. W., B. A. Albrecht, J. A. van Oijen, L. P. H. de Goey, and R. J. M. Bastiaans. 2008. “Premixed and Nonpremixed Generated Manifolds in Large-Eddy Simulation of Sandia Flame D and F.” Combustion and Flame 153 (3): 394–416. doi:10.1016/j.combustflame.2008.01.009.
  • Wu, X. 2017. “Inflow Turbulence Generation Methods.” Annual Review of Fluid Mechanics 49 (May 2016): 23–49. doi:10.1146/annurev-fluid-010816-060322.
  • Xu, J., D. Huang, R. Chen, and H. Meng. Mar. 2021. “An Improved NO Prediction Model for Large Eddy Simulation of Turbulent Combustion.” Flow Turbulence Combust 106 (3): 881–899. doi:10.1007/s10494-020-00204-3.
  • Yang, S., X. Wang, W. Sun, and V. Yang. 2020. “Comparison of Finite Rate Chemistry and Flamelet/Progress-Variable Models: Sandia Flames and the Effect of Differential Diffusion.” Combustion Science and Technology, 1–23. doi:10.1080/00102202.2020.1754809.
  • Zhang, H., Y. Chen, and Y. Lv. Aug. 2022. “Development and Validation of a Combustion Large-Eddy-Simulation Solver Based on Fully Compressible Formulation and Tabulated Chemistry.” Aerospace Science and Technology 127: 107693. doi:10.1016/j.ast.2022.107693.
  • Zhang, T., J. Li, Y. Yan, and Y. Fan. Mar. 2024. “Large Eddy Simulation of a Turbulent Polydisperse Spray Flow: A Comparative Study of Subgrid Scale Models and Droplet Injection Models1.” Journal of Fluids Engineering 146 (7): 071103. doi:10.1115/1.4064760.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.