82
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Stochastic Block Smooth Graphon Model

& ORCID Icon
Received 24 Mar 2022, Accepted 24 Jun 2024, Accepted author version posted online: 08 Jul 2024
Accepted author version

References

  • Adamic, L. A. and N. Glance (2005). The political blogosphere and the 2004 U.S. Election: Divided they blog. In 3rd International Workshop on Link Discovery, LinkKDD 2005 - in conjunction with 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 36–43.
  • Airoldi, E. M., D. M. Blei, S. E. Fienberg, and E. P. Xing (2008). Mixed membership stochastic blockmodels. Journal of Machine Learning Research 9, 1981–2014.
  • Airoldi, E. M., T. B. Costa, and S. H. Chan (2013). Stochastic blockmodel approximation of a graphon: Theory and consistent estimation. In Advances in Neural Information Processing Systems 26, pp. 692–700.
  • Andersen, M., J. Dahl, and L. Vandenberghe (2016). CvxOpt: Open source software for convex optimization (Python). Available online: https://cvxopt.org [accessed 11-27-2020]. Version 1.2.7.
  • Bickel, P., D. Choi, X. Chang, and H. Zhang (2013). Asymptotic normality of maximum likelihood and its variational approximation for stochastic blockmodels. Annals of Statistics.
  • Borgs, C., J. Chayes, and L. Lovász (2010). Moments of two-variable functions and the uniqueness of graph limits. Geometric and Functional Analysis 19 (6), 1597–1619.
  • Borgs, C., J. Chayes, L. Lovász, V. T. Sós, and K. Vesztergombi (2007). Counting graph homomorphisms. In Topics in Discrete Mathematics, pp. 315–371.
  • Burnham, K. and D. Anderson (2002). Model selection and multimodel inference: A practical information-theoretic approach. (2nd ed.). New York: Springer.
  • Burnham, K. P. and D. R. Anderson (2004). Multimodel inference: Understanding AIC and BIC in model selection. Sociological Methods and Research 33 (2), 261–304.
  • Chan, S. H. and E. M. Airoldi (2014). A consistent histogram estimator for exchangeable graph models. In 31st International Conference on Machine Learning, ICML 2014.
  • Chatterjee, S. (2015). Matrix estimation by universal singular value thresholding. Annals of Statistics 43 (1), 177–214.
  • Chen, K. and J. Lei (2018). Network cross-validation for determining the number of communities in network data. Journal of the American Statistical Association 113 (521), 241–251.
  • Choi, D. S., P. J. Wolfe, and E. M. Airoldi (2012). Stochastic blockmodels with a growing number of classes. Biometrika 99 (2), 273–284.
  • Côme, E. and P. Latouche (2015). Model selection and clustering in stochastic block models based on the exact integrated complete data likelihood. Statistical Modelling 15 (6), 564–589.
  • Crossley, N. A., A. Mechelli, P. E. Vértes, T. T. Winton-Brown, A. X. Patel, C. E. Ginestet, P. McGuire, and E. T. Bullmore (2013). Cognitive relevance of the community structure of the human brain functional coactivation network. Proceedings of the National Academy of Sciences of the United States of America 110 (28), 11583–11588.
  • Daudin, J. J., F. Picard, and S. Robin (2008). A mixture model for random graphs. Statistics and Computing 18 (2), 173–183.
  • De Nicola, G., B. Sischka, and G. Kauermann (2022). Mixture models and networks: The stochastic blockmodel. Statistical Modelling 22 (1–2), 67–94.
  • Decelle, A., F. Krzakala, C. Moore, and L. Zdeborová (2011). Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 84 (6).
  • Diaconis, P. and S. Janson (2007). Graph limits and exchangeable random graphs. arXiv preprint arXiv:0712.2749.
  • Eilers, P. H. and B. D. Marx (1996). Flexible smoothing with B-splines and penalties. Statistical Science 11 (2), 89–102.
  • Fienberg, S. E. (2012). A brief history of statistical models for network analysis and open challenges. Journal of Computational and Graphical Statistics 21 (4), 825–839.
  • Fosdick, B. K., T. H. McCormick, T. B. Murphy, T. L. J. Ng, and T. Westling (2019). Multiresolution network models. Journal of Computational and Graphical Statistics 28 (1), 185–196.
  • Gao, C., Y. Lu, and H. H. Zhou (2015). Rate-optimal graphon estimation. Annals of Statistics 43 (6), 2624–2652.
  • Gao, C. and Z. Ma (2020). Discussion of ’Network cross-validation by edge sampling’. Biometrika 107 (2), 281–284.
  • Geng, J., A. Bhattacharya, and D. Pati (2019). Probabilistic Community Detection With Unknown Number of Communities. Journal of the American Statistical Association 114 (526), 893–905.
  • Ghasemian, A., H. Hosseinmardi, A. Galstyan, E. M. Airoldi, and A. Clauset (2020). Stacking models for nearly optimal link prediction in complex networks. Proceedings of the National Academy of Sciences of the United States of America 117 (38), 23393–23400.
  • Goldenberg, A., A. X. Zheng, S. E. Fienberg, and E. M. Airoldi (2009). A survey of statistical network models. Foundations and Trends in Machine Learning 2 (2), 129–233.
  • Handcock, M. S., A. E. Raftery, and J. M. Tantrum (2007). Model-based clustering for social networks. Journal of the Royal Statistical Society. Series A: Statistics in Society 170 (2), 301–354.
  • Hoff, P. D. (2007). Modeling homophily and stochastic equivalence in symmetric relational data. In Advances in Neural Information Processing Systems 20 - Proceedings of the 2007 Conference.
  • Hoff, P. D. (2009). Multiplicative latent factor models for description and prediction of social networks. Computational and Mathematical Organization Theory 15 (4), 261–272.
  • Hoff, P. D. (2021). Additive and multiplicative effects network models. Statistical Science 36 (1), 34–50.
  • Hoff, P. D., A. E. Raftery, and M. S. Handcock (2002). Latent space approaches to social network analysis. Journal of the American Statistical Association 97 (460), 1090–1098.
  • Holland, P. W., K. Laskey, and S. Leinhardt (1983). Stochastic blockmodels: First steps. Social Networks 5, 109–137.
  • Hunter, D. R., P. N. Krivitsky, and M. Schweinberger (2012). Computational statistical methods for social network models. Journal of Computational and Graphical Statistics 21 (4), 856–882.
  • Hurvich, C. M. and C. L. Tsai (1989). Regression and time series model selection in small samples. Biometrika 76 (2), 297–307.
  • Jaewon, C., D. Pedigo Benjamin, W. Bridgeford Eric, K. Varjavand Bijan, S. Helm Hayden, and T. Vogelstein Joshua (2019). GraSPy: Graph statistics in Python. Journal of Machine Learning Research 20 (158), 1–7.
  • Karrer, B. and M. E. Newman (2011). Stochastic blockmodels and community structure in networks. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 83 (1).
  • Kauermann, G. and J. D. Opsomer (2011). Data-driven selection of the spline dimension in penalized spline regression. Biometrika 98 (1), 225–230.
  • Kemp, C., J. B. Tenenbaum, T. L. Griffiths, T. Yamada, and N. Ueda (2006). Learning systems of concepts with an infinite relational model. In Proceedings of the National Conference on Artificial Intelligence, Volume 1, pp. 381–388.
  • Klopp, O., A. B. Tsybakov, and N. Verzelen (2017). Oracle inequalities for network models and sparse graphon estimation. Annals of Statistics 45 (1), 316–354.
  • Kolaczyk, E. D. (2009). Statistical analysis of network data. New York: Springer.
  • Kolaczyk, E. D. (2017). Topics at the frontier of statistics and network analysis. Cambridge: Cambridge University Press.
  • Kolaczyk, E. D. and G. Csardi (2014). Statistical analysis of network data with R (2nd ed.). New York: Springer.
  • Latouche, P. and S. Robin (2016). Variational Bayes model averaging for graphon functions and motif frequencies inference in W-graph models. Statistics and Computing 26 (6), 1173–1185.
  • Levine, R. A. and G. Casella (2001). Implementations of the Monte Carlo EM algorithm. Journal of Computational and Graphical Statistics 10 (3), 422–439.
  • Li, T. and C. M. Le (2023). Network estimation by mixing: Adaptivity and more. Journal of the American Statistical Association. [Available online.] DOI: 10.1080/01621459.2023.2252137.
  • Li, T., E. Levina, and J. Zhu (2020). Network cross-validation by edge sampling. Biometrika 107 (2), 257–276.
  • Li, T., E. Levina, J. Zhu, and C. M. Le (2021). randnet: Random network model estimation, selection and parameter tuning (R). Available online: https://mran.microsoft.com/snapshot/2021-08-04/web/packages/randnet [accessed 11-22-2022]. Version 0.4.
  • Li, Y., X. Fan, L. Chen, B. Li, and S. A. Sisson (2022). Smoothing graphons for modelling exchangeable relational data. Machine Learning 111 (1), 319–344.
  • Lloyd, J. R., P. Orbanz, Z. Ghahramani, and D. M. Roy (2012). Random function priors for exchangeable arrays with applications to graphs and relational data. In Advances in Neural Information Processing Systems, Volume 2, pp. 998–1006.
  • Lovász, L. and B. Szegedy (2006). Limits of dense graph sequences. Journal of Combinatorial Theory. Series B 96 (6), 933–957.
  • Lusher, D., J. Koskinen, and G. Robins (2013). Exponential random graph models for social networks: Theory, methods, and applications. Cambridge: Cambridge University Press.
  • Ma, Z., Z. Ma, and H. Yuan (2020). Universal latent space model fitting for large networks with edge covariates. Journal of Machine Learning Research 21, 1–67.
  • Mariadassou, M., S. Robin, and C. Vacher (2010). Uncovering latent structure in valued graphs: A variational approach. Annals of Applied Statistics 4 (2), 715–742.
  • Matias, C. and S. Robin (2014). Modeling heterogeneity in random graphs through latent space models: A selective review. ESAIM: Proceedings and Surveys 47, 55–74.
  • McCulloch, C. E. (1994). Maximum likelihood variance components estimation for binary data. Journal of the American Statistical Association, 330–335.
  • Newman, M. E. (2006). Modularity and community structure in networks. Proceedings of the National Academy of Sciences of the United States of America 103 (23), 8577–8582.
  • Newman, M. E. and G. Reinert (2016). Estimating the number of communities in a network. Physical Review Letters 117 (7).
  • Nowicki, K. and T. A. Snijders (2001). Estimation and prediction for stochastic blockstructures. Journal of the American Statistical Association 96 (455), 1077–1087.
  • Olhede, S. C. and P. J. Wolfe (2014). Network histograms and universality of blockmodel approximation. Proceedings of the National Academy of Sciences 111 (41), 14722–14727.
  • Orbanz, P. and D. M. Roy (2015). Bayesian models of graphs, arrays and other exchangeable random structures. IEEE Transactions on Pattern Analysis and Machine Intelligence 37 (2), 437–461.
  • Peixoto, T. P. (2012). Entropy of stochastic blockmodel ensembles. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 85 (5).
  • Peixoto, T. P. (2017). Nonparametric Bayesian inference of the microcanonical stochastic block model. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 95 (1).
  • Riolo, M. A., G. T. Cantwell, G. Reinert, and M. E. Newman (2017). Efficient method for estimating the number of communities in a network. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 96 (3).
  • Rohe, K., S. Chatterjee, and B. Yu (2011). Spectral clustering and the high-dimensional stochastic blockmodel. Annals of Statistics 39 (4), 1878–1915.
  • Rubinov, M. and O. Sporns (2010). Brain connectivity toolbox (MATLAB). Available online: https://sites.google.com/site/bctnet [accessed 02-15-2021].
  • Ruppert, D., M. P. Wand, and R. J. Carroll (2003). Semiparametric Regression. Cambridge: Cambridge University Press.
  • Ruppert, D., M. P. Wand, and R. J. Carroll (2009). Semiparametric regression during 2003–2007. Electronic Journal of Statistics 3, 1193–1256.
  • Salter-Townshend, M., A. White, I. Gollini, and T. B. Murphy (2012). Review of statistical network analysis: Models, algorithms, and software. Statistical Analysis and Data Mining 5 (4), 243–264.
  • Schweinberger, M. and M. S. Handcock (2015). Local dependence in random graph models: Characterization, properties and statistical inference. Journal of the Royal Statistical Society. Series B: Statistical Methodology 77 (3), 647–676.
  • Sischka, B. (2022). EM-based estimation of stochastic block smooth graphon models (Python). Available online: https://github.com/BenjaminSischka/SBSGMest.git [accessed 03-24-2022].
  • Sischka, B. and G. Kauermann (2022). EM-based smooth graphon estimation using MCMC and spline-based approaches. Social Networks 68, 279–295.
  • Snijders, T. A. (2011). Statistical models for social networks. Annual Review of Sociology 37, 131–153.
  • Snijders, T. A. and K. Nowicki (1997). Estimation and prediction for stochastic blockmodels for graphs with latent block structure. Journal of Classification 14 (1), 75–100.
  • Turlach, B. A. and A. Weingessel (2013). quadprog: Functions to solve quadratic programming problems (R). Available online: https://CRAN.R-project.org/package=quadprog [accessed 11-27-2020]. Version 1.5-5.
  • Wang, Y. X. and P. J. Bickel (2017). Likelihood-based model selection for stochastic block models. Annals of Statistics 45 (2), 500–528.
  • Wei, G. C. G. and M. A. Tanner (1990). A Monte Carlo implementation of the EM algorithm and the poor man’s data augmentation algorithms. Journal of the American Statistical Association, 699–704.
  • Wolfe, P. J. and S. C. Olhede (2013). Nonparametric graphon estimation. arXiv preprint arXiv:1309.5936.
  • Wood, S. N. (2017). Generalized additive models: An introduction with R (2nd ed.). Boca Raton: CRC Press.
  • Yang, J. J., Q. Han, and E. M. Airoldi (2014). Nonparametric estimation and testing of exchangeable graph models. In Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics. Journal of Machine Learning Research, Conference and Workshop Proceedings 33, PMLR, pp. 1060–1067.
  • Zhang, Y., E. Levina, and J. Zhu (2017). Estimating network edge probabilities by neighbourhood smoothing. Biometrika 104 (4), 771–783.