584
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Separating Cognitive and Content Domains in Mathematical Competence

, , &

REFERENCES

  • Adams, R. J., Wilson, M., & Wang, W. C. (1997). The multidimensional random coefficients multinomial logit model. Applied Psychological Measurement, 21, 1–23. doi:10.1177/0146621697211001
  • Anderson, L. W., & Krathwohl, D. R. (Eds.). (2001). A taxonomy for learning, teaching, and assessing: A revision of Bloom's taxonomy of educational objectives. New York, NY: Longman.
  • Asparouhov, T., & Muthén, B. (2005). Multivariate statistical modeling with survey data. Proceedings of the Federal Committee on Statistical Methodology (FCSM) Research Conference. Retrieved from http://www.fcsm.gov/05papers/Asparouhov_Muthen_IIA.pdf
  • Babcock, B. (2011). Estimating a noncompensatory IRT model using metropolis within Gibbs sampling. Applied Psychological Measurement, 35, 317–329. doi:10.1177/0146621610392366
  • Black, P., & Wiliam, D. (1998). Assessment and classroom learning. Assessment in Education, 5, 7–74. doi:10.1080/0969595980050102
  • Bloom, B. S. (Ed.). (1956). Taxonomy of educational objectives: The classification of educational goals. Handbook 1: Cognitive domain. New York, NY: David McKay.
  • Blum, W., & Leiss, D. (2005). Modellieren im Unterricht mit der “Tanken”-Aufgabe [Modeling in instruction using the “refueling”-task]. Mathematik lehren, 128, 18–21.
  • Blum, W., & Leiss, D. (2007). Investigating quality mathematics teaching—the DISUM project. In C. Bergsten & B. Grevholm (Eds.), Developing and researching quality in mathematics teaching and learning (pp. 3–16). Linköping, Sweden: SMDF.
  • Blum, W., Neubrand, M., Ehmke, T., Senkbeil, M., Jordan, A., Ulfig, F., & Carstensen, C. (2004). Mathematische Kompetenz [Mathematical competence]. In PISA-Konsortium Deutschland (Ed.), PISA 2003. Der Bildungsstand der Jugendlichen in Deutschland–Ergebnisse des zweiten internationalen Vergleichs (pp. 47–92). Münster, Germany: Waxmann.
  • Borg, I. (1986). Facettentheorie: Prinzipien und Beispiele [Facet theory: Principles and examples]. Psychologische Rundschau, 37, 121–137.
  • Brunner, M. (2006). Mathematische Schülerleistung: Struktur, Schulformunterschiede und Validität [Student achievement in mathematics: Structure, school type differences and validity] (Unpublished doctoral dissertation). Humboldt-Universität zu Berlin, Germany. Retrieved from http://library.mpib-berlin.mpg.de/diss/Brunner_Dissertation.pdf
  • Bürgermeister, A., Klimczak, M., Klieme, E., Rakoczy, K., Blum, W., Leiß, D., … Besser, M. (2011). Leistungsbeurteilung im Mathematikunterricht–Eine Darstellung des Projekts “Nutzung und Auswirkungen der Kompetenzmessung in mathematischen Lehr-Lernprozessen” [Assessment in mathematics instruction–A description of the project “Conditions and Consequences of Classroom Assessment”]. Schulpädagogik-heute, 2(3), 1–18.
  • Cortina, J. M. (1993). What is coefficient alpha? An examination of theory and applications. Journal of Applied Psychology, 78, 98–104. doi:10.1037/0021-9010.78.1.98
  • Csapó, B. (2010). Goals of learning and the organization of knowledge. Zeitschrift für Pädagogik, 56, 12–27. Retrieved from http://www.beltz.de/de/nc/paedagogik/zeitschriften/zeitschrift-fuer-paedagogik.html
  • DiBello, L., Roussos, L. A., & Stout, W. (2007). Review of cognitively diagnostic assessment and a summary of psychometric models. In C. V. Rao & S. Sinharay (Eds.), Handbook of statistics: Vol. 26. Psychometrics (pp. 979–1027). Amsterdam, the Netherlands: Elsevier.
  • Else-Quest, N. M., Hyde, J. S., & Linn, M. C. (2010). Cross-national patterns of gender differences in mathematics: A meta-analysis. Psychological Bulletin, 136, 103–127. doi:10.1037/a0018053
  • Frey, E., Hartig, J., & Rupp, A. A. (2009). An NCME instructional module on booklet designs in large-scale assessments of student achievement: Theory and practice. Educational Measurement: Issues and Practice, 28(3), 39–53. doi:10.1111/j.1745-3992.2009.00154.x
  • Gustafsson, J. E. (1994). Hierarchical models of intelligence and educational achievement. In A. Demetriou & A. Efklides (Eds.), Intelligence, mind, and reasoning: Structure and development (pp. 45–73). Amsterdam, the Netherlands: Elsevier.
  • Haberman, S. J., & Sinharay, S. (2010). Reporting of subscores using multidimensional item response theory. Psychometrika, 75, 209–227. doi:10.1007/s11336-010-9158-4
  • Harks, B. (2013). Kompetenzdiagnostik und Rückmeldung–zwei Komponenten formativen Assessments [Competence diagnostics and feedback–Two components of formative assessment] (Unpublished doctoral dissertation). Goethe-Universität, Frankfurt am Main, Germany.
  • Harks, B., Rakoczy, K., Hattie, J., Besser, M., & Klieme, E. (2014). The effects of feedback on achievement, interest and self-evaluation: The role of feedback's perceived usefulness. Educational Psychology, 34, 269–290. doi:10.1080/01443410.2013.785384
  • Harlen, W. (2008). Editior's introduction. In W. Harlen (Ed.), Student assessment and testing (pp. xix-xlvi). London, UK: Sage.
  • Hartig, J., & Höhler, J. (2008). Representation of competencies in multidimensional IRT models with within-item and between-item multidimensionality. Zeitschrift für Psychologie/Journal of Psychology, 216, 89–101. doi:10.1027/0044-3409.216.2.89
  • Hartig, J., & Höhler, J. (2009). Multidimensional IRT models for the assessment of competencies. Studies in Educational Evaluation, 35, 57–63. doi:10.1016/j.stueduc.2009.10.002
  • Hattie, J. (2003). Formative and summative interpretations of assessment information. Retrieved from https://cdn.auckland.ac.nz/assets/education/hattie/docs/formative-and-summative-assessment-%282003%29.pdf
  • Hyde, J. S., Fennema, E., & Lamon, S. J. (1990). Gender differences in mathematics performance: A meta-analysis. Psychological Bulletin, 107, 139–155. doi:10.1037/0033-2909.107.2.139
  • Kaiser, G., & Steisel, T. (2000). Results of an analysis of the TIMS study from a gender perspektive. Zentralblatt für Didaktik der Mathematik, 32, 18–24. doi:10.1007/BF02652735
  • Klieme, E. (2000). Fachleistungen im voruniversitären Mathematik- und Physikunterricht: Theoretische Grundlagen, Kompetenzstufen und Unterrichtsschwerpunkte [Subject specific achievement in preuniversity mathematics and physics instruction: Theoretical basis, competence levels and instructional focuses]. In J. Baumert, W. Bos, & R. Lehmann (Eds.), TIMSS/III. Dritte Internationale Mathematik- und Naturwissenschaftsstudie–Mathematische und naturwissenschaftliche Bildung am Ende der Schullaufbahn: Bd. 2. Mathematische und physikalische Kompetenzen am Ende der gymnasialen Oberstufe (pp. 57–128). Opladen, Germany: Leske & Budrich.
  • Klieme, E., Hartig, J., & Rauch, D. (2008). The concept of competence in educational context. In J. Hartig, E. Klieme, & D. Leutner (Eds.), Assessment of competencies in educational contexts (pp. 3–22). Göttingen, Germany: Hogrefe.
  • Klieme, E., Neubrand, M., & Lüdtke, O. (2001). Mathematische Grundbildung: Testkonzeption und Ergebnisse. [Mathematical basic education: Test conception and results]. In J. Baumert, E. Klieme, M. Neubrand, M. Prenzel, U. Schiefele, W. Schneider, … M. Weiß (Eds.), PISA 2000. Basiskompetenzen von Schülerinnen und Schülern im internationalen Vergleich (pp. 139–190). Opladen, Germany: Leske & Budrich.
  • Klieme, E., Pauli, C., & Reusser, K. (2009). The Pythagoras study—Investigating effects of teaching and learning in Swiss and German mathematics classrooms. In T. Janik & T. Seidel (Eds.), The power of video studies in investigating teaching and learning in the classroom (pp. 137–160). Münster, Germany: Waxmann.
  • Koeppen, K., Hartig, J., Klieme, E., & Leutner, D. (2008). Current issues in competence modeling and assessment. Zeitschrift für Psychologie/Journal of Psychology, 216, 61–73. doi:10.1027/0044-3409.216.2.61
  • Kunina-Habenicht, O. (2010). Theoretical and practical considerations for implementing diagnostic classification models: Insights from simulation-based and applied research (Unpublished doctoral dissertation). Humboldt-Universität zu Berlin, Germany. Retrieved from http://edoc.hu-berlin.de/dissertationen/kunina-habenicht-olga-2010-06-03/PDF/kunina-habenicht.pdf
  • Kunina-Habenicht, O., Rupp, A. A., & Wilhelm, O. (2009). A practical illustration of multidimensional diagnostic skills profiling: Comparing results from confirmatory factor analysis and diagnostic classification models. Studies in Educational Evaluation, 35, 64–70. doi:10.1016/j.stueduc.2009.10.003
  • Kupermintz, H., & Snow, R. E. (1997). Enhancing the validity and usefulness of large-scale educational assessments: III. NELS: 88 mathematics achievement to 12th grade. American Educational Research Journal, 34, 124–150. doi:10.3102/00028312034001124
  • Lane, S., Stone, C. A., Ankenmann, R. D., & Liu, M. (1995). Examination of the assumptions and properties of the graded item response model: An example using a mathematics performance assessment. Applied Measurement in Education, 8, 313–340. doi:10.1207/s15324818ame0804_3
  • Leiss, D., & Blum, W. (2006). Beschreibung zentraler mathematischer Kompetenzen [Description of central mathematical competencies]. In W. Blum, C. Drüke-Noe, R. Hartung, & O. Köller (Eds.), Bildungsstandards Mathematik: Konkret (pp. 33–50). Berlin, Germany: Cornelsen Scriptor.
  • Lindberg, S. M., Hyde, J. S., Petersen, J. L., & Linn, M. C. (2010). New trends in gender and mathematics performance: A meta-analysis. Psychological Bulletin, 136, 1123–1135. doi:10.1037/a0021276
  • Liu, O. L., Wilson, M., & Paek, I. (2008). A multidimensional Rasch analysis of gender differences in PISA mathematics. Journal of Applied Measurement, 9, 18–35.
  • McClelland, D. C. (1973). Testing for competence rather than for “intelligence.” American Psychologist, 28, 1–14. doi:10.1037/h0034092
  • Mullis, I. V. S., Martin, M. O., & Foy, P. (2008). TIMSS 2007 international mathematics report: Findings from IEA's trends in international mathematics and science study at the fourth and eighth grades. Chestnut Hill, MA: Boston College.
  • Mullis, I. V. S., Martin, M. O., Gonzalez, E. J., & Chrostowski, S. J. (2004). TIMSS 2003 international mathematics report findings from IEA's trends in international mathematics and science study at the fourth and eighth grades. Chestnut Hill, MA: Boston College.
  • Mullis, I. V. S., Martin, M. O., Ruddock, G. J., O'Sullivan, C. Y., & Preuschoff, C. (2009). TIMSS 2011 assessment frameworks. Chestnut Hill, MA: Boston College.
  • Muthén, L. K., & Muthén, B. O. (1998–2012). Mplus (Version 7.0) [Computer software]. Los Angeles, CA: Muthén & Muthén.
  • National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: Author.
  • Niss, M. (2003). Mathematical competencies and the learning of mathematics: The Danish KOM project. In A. Gagatsis & S. Papastavridis (Eds.), Mediterranean Conference on Mathematical Education (pp. 115–124). Athens, Greece: Hellenic Mathematical Society and Cyprus Mathematical Society.
  • OECD. (2002). PISA 2000 technical report. Paris, France: Author.
  • OECD. (2003). The PISA 2003 assessment framework—Mathematics, reading, science, and problem solving knowledge and skills. Paris, France: Author.
  • OECD. (2004). Learning for tomorrow's world. First results from PISA 2003. Paris, France: Author.
  • OECD. (2009a). PISA 2006 technical report. Paris, France: Author.
  • OECD. (2009b). PISA 2009 assessment framework. Key competencies in reading, mathematics and science. Paris, France: Author.
  • OECD. (2013). PISA 2012 assessment and analytical framework: Mathematics, reading, science, problem solving and financial literacy. Paris, France: Author.
  • Rakoczy, K., Harks, B., Klieme, E., Blum, W., & Hochweber, J. (2013). Written feedback in mathematics: Mediated by students' perception, moderated by goal orientation. Learning and Instruction, 27, 63–73. doi:10.1016/j.learninstruc.2013.03.002
  • Reckase, M. D. (2009). Multidimensional item response theory (statistics for social and behavioral sciences). New York, NY: Springer.
  • Resnick, L. B., Cauzinille-Marmeche, E., & Mathieu, J. (1987). Understanding algebra. In J. A. Szoboda, & D. Rogers (Eds.), Cognitive processes in mathematics (pp. 169–203). Oxford, England: Clarendon.
  • Rittle-Johnson, B., Matthews, P. G., Taylor, R. S., & McEldoon, K. L. (2011). Assessing knowledge of mathematical equivalence: A construct-modeling approach. Journal of Educational Psychology, 103, 85–104. doi:10.1037/a0021334
  • Roberts, M. J. (2007). Integrating the mind: Domain general versus domain specific processes in higher cognition. Hove, England: Psychology Press.
  • Robitzsch, A. (2009). Methodische Herausforderungen bei der Kalibrierung von Leistungstests [Methodological challenges in calibrating performance tests]. In A. Bremerich-Vos, D. Granzer, & O. Köller (Eds.), Bildungsstandards Deutsch und Mathematik (pp. 42–106). Weinheim, Germany: Beltz Pädagogik.
  • Rost, J. (2004). Lehrbuch Testtheorie–Testkonstruktion [Textbook test theory–test construction]. Bern, Switzerland: Huber.
  • Russel, M. (2010). Technology-aided formative assessment and learning: New developments and applications. In H. L. Andrade & G. J. Cizek (Eds.), Handbook of formative assessment (pp. 125–138). New York, NY: Routledge.
  • Ryan, K. E., & Chiu, S. (2001). An examination of item context effects, DIF, and gender DIF. Applied Measurement in Education, 14, 73–90. doi:10.1207/S15324818AME1401_06
  • Sinharay, S. (2010). How often do subscores have added value? Results from operational and simulated data. Journal of Educational Measurement, 47, 150–174. doi:10.1111/j.1745-3984.2010.00106.x
  • Stobart, G. (2006). The validity of formative assessment. In J. Gardner (Ed.), Assessment and learning (pp. 133–146). London, UK: Sage.
  • Stone, C. A., Ye, F., Zu, X., & Lane, S. (2010). Providing subscale scores for diagnostic information: A case study when the test is essentially unidimensional. Applied Measurement in Education, 23, 63–86. doi:10.1080/08957340903423651
  • Stout, W. (2007). Skills diagnosis using IRT-based continuous latent trait models. Journal of Educational Measurement, 44, 313–324. doi:10.1111/j.1745-3984.2007.00041.x
  • Vasilyeva, M., Ludlow, L. H., Casey, B. M., & St. Onge, C. (2008). Examination of the psychometric properties of the measurement skills assessment. Educational and Psychological Measurement, 69, 106–130. doi:10.1177/0013164408318774
  • Walker, C. M., & Beretvas, S. N. (2003). Comparing multidimensional and unidimensional proficiency classifications: Multidimensional IRT as a diagnostic aid. Journal of Educational Measurement, 40, 255–275. doi:10.1111/j.1745-3984.2003.tb01107.x
  • Weinert, F. E. (2001). Concept of competence: A conceptual clarification. In D. S. Rychen & L. H. Salganik (Eds.), Defining and selecting key competencies (pp. 45–65). Bern, Switzerland: Hogrefe & Huber.
  • Wiliam, D. (2006). Formative assessment: Getting the focus right. Educational Assessment, 11, 283–289. doi:10.1080/10627197.2006.9652993
  • Winkelmann, H. (2009). Validierung der länderübergreifenden Bildungsstandards für mathematische Kompetenzen im Primarbereich [Validation of cross-country education standards for mathematics competence in primary education] (Unpublished doctoral dissertation). Humboldt-Universität zu Berlin, Germany.
  • Winkelmann, H., & Robitzsch, A. (2009). Modelle mathematischer Kompetenzen: Empirische Befunde zur Dimensionalität [Models of mathematical competence: Empirical findings on dimensionality]. In A. Bremerich-Vos, D. Granzer, & O. Köller (Eds.), Bildungsstandards Deutsch und Mathematik (pp. 169–196). Weinheim, Germany: Beltz Pädagogik.
  • Wu, M., & Adams, R. (2006). Modelling mathematics problem solving item responses using a multidimensional IRT model. Mathematics Education Research Journal, 18, 93–113. doi:10.1007/BF03217438
  • Young, W. J., Cho, Y., Ling, G., Cline, F., Steinberg, J., & Stone, E. (2008). Validity and fairness of state standards-based assessments for English language learners. Educational Assessment, 13, 170–192. doi:10.1080/10627190802394388
  • Zhang, J. (2004). Comparison of unidimensional and multidimensional approaches to IRT parameter estimation (ETS Research Rep. No. 04-44). Princeton, NJ: Educational Testing Service.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.