103
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Neural Networks Predict Protein Folding and Structure: Artificial Intelligence Faces Biomolecular Complexity

, , , &
Pages 149-182 | Received 06 Oct 1999, Accepted 19 Nov 1999, Published online: 05 Oct 2006

References

  • Schulz , G. E. and Schirmer , R. H. 1979 . Principles of Protein Structure. , 314 New York : Springer Verlag .
  • Brooks , C. L. III , Karplus , M. and Pettitt , B. M. 1988 . “ Proteins, a theoretical perspective of dynamics, structure and thermodynamics. ” . In Adv. Chem. Phys. , Vol. LXXI , New York : Wiley .
  • McCammon , J. A. and Harvey , S. C. 1987 . Dynamics of Proteins and Nucleic Acids. , 234 Cambridge : Cambridge University Press .
  • Creighton , T. E. 1990 . Protein folding. . Biochem. J. , 270 : 1 – 16 .
  • Richards , F. M. 1991 . The protein folding problem. . Sci. American , January 34 – 41 .
  • Gathing , M. J. and Sambrook , J. 1992 . Protein folding in the cell. . Nature , 355 : 33 – 45 .
  • Baldwin , R. L. 1999 . Protein folding 1961 to 1982. . Nature Struct. Biol. , 6 : 814 – 817 .
  • Anfinsen , C. B. 1973 . Principles that govern the folding of protein chains. . Science. , 181 : 223 – 230 .
  • Govindarajan , S. and Goldstein , R. 1998 . On the thermodynamic hypothesis of protein folding. . Proc. Natl. Acad. Sci. USA , 95 : 5545 – 5549 .
  • Compiani , M. , Fariselli , P. , Martelli , P.-L. and Casadio , R. 1998 . An entropy criterion to detect minimally frustrated intermediates in protein folding. . Proc. Natl. Acad. Sci. USA , 95 : 9290 – 9294 .
  • Minor , D. L. and Kim , P. S. 1994 . Context is a major determinant of β-sheets propensity. . Nature , 371 : 264 – 267 .
  • Hamada , D. , Segawa , S. and Goto , Y. 1996 . Non-native α-helical intermediate in the refolding of β-lactoglobulin, a predominantly β-sheet protein. . Nature Struct. Biol. , 3 : 868 – 873 .
  • Frauenfelder , H. and Wolynes , P. G. 1994 . Biomolecules: Where the physics of complexity and simplicity meet. . Physics Today , February 58 – 64 .
  • Bryngelson , J. D. and Wolynes , P. G. 1987 . Spin glasses and the statistical mechanics of protein folding . Proc. Nat. Acad. Sci. USA , 84 : 7524 – 7528 .
  • Bryngelson , J. D. and Wolynes , P. G. 1989 . Intermediates and barrier crossing in a random energy model (with application to protein folding). . J. Phys. Chem. , 93 : 6902 – 6915 .
  • Dill , K. A. 1999 . Polymer principles and protein folding. . Protein Sci. , 8 : 1166 – 1180 .
  • Bryson , J. W. , Betz , S. F. , Lu , H. S. , Suich , D. J. , Zhou , H. X. , O'Ncill , H. T. and DeGrado , W. F. 1995 . Protein design: A hierarchic approach. . Science. , 270 : 935 – 940 .
  • Broglia , R. A. , Tiana , G. , Pasquali , S. , Roman , H. E. and Vigezzi , E. 1998 . Folding and aggregation of designed proteins. . Proc. Natl. Acad. Sci. USA , 95 : 12930 – 12933 .
  • Wagner , C. and Kiefhaber , T. 1999 . Intermediates can accelerate protein folding. . Proc. Natl. Acad. Sci. USA. , 96 : 6716 – 6721 .
  • Dill , K. A. and Chan , H. S. 1997 . From Levinthal to pathways to funnels. . Nature Struct. Biol. , 4 : 10 – 19 .
  • Chothia , C. and Lesk , A. M. 1986 . The relation between the divergence of sequence and structure in proteins. . EMBO J. , 5 : 823 – 826 .
  • Durbin , R. , Eddy , S. , Krogh , A. and Mitchison , G. 1998 . Biological Sequence Analysis. , 536 Cambridge : Cambridge University Press .
  • Rost , B. and Sander , C. 1999 . “ 3rd generation prediction of secondary structure. ” . In Predicting Protein Structure , Edited by: Webster , D. M. Humana Press . (in press).
  • Rost , B. 1998 . “ Protein structure prediction in 1D, 2D, and 3D. ” . In Encyclopaedia of Computational Chemistry , Edited by: von Rague-Schleyer , P. , Allinger , N. L. , Clark , T. C. , Gasteiger , J. , Kolman , P. A. and Schaefer , H. F. 2242 – 2255 . Chichester : John Wiley .
  • Burgess , A. W. and Scheraga , H. A. 1975 . Assessment of some problems associated with prediction of the three-dimensional structure of a protein from its amino-acid sequence. . Proc. Natl. Acad. Sci. USA , 72 : 1221 – 1225 .
  • Kohonen , T. 1984 . Self-Organization and Associative Memories. , 255 Berlin-Heidelberg : Springer .
  • Bishop , C. M. 1995 . Neural Networks for Pattern Recognition. , 500 Oxford : Oxford Univ. Press. .
  • Hirst , J. D. and Sternberg , M. J. E. 1992 . Prediction of structural and functional features of proteins and nucleic acid sequences by artificial neural networks. . Biochemistry , 31 : 7211 – 7218 .
  • Rost , B. and Sander , C. 1994 . Structure Prediction of Proteins — where are we now? . Curr. Opinion Biotech. , 5 : 372 – 380 .
  • Compiani , M. , Fariselli , P. and Casadio , R. 1994 . “ Neural networks and prediction of protein structures. ” . In Neural Networks in Biomedicine , Edited by: Masulli , F. , Morasso , P. G. and Schenone , A. 313 – 332 . Singapore : World Scientific .
  • Rumelhart , D. E. , Hinton , G. E. and Williams , R. J. 1986 . Learning representations by back-propagating errors. . Nature , 323 : 533 – 536 .
  • Muskal , S. M. and Kim , S.-H. 1992 . Predicting protein secondary structure content. A tandem neural network approach. . J. Mol. Biol. , 225 : 713 – 727 .
  • Friedrichs , M. S. and Wolynes , P. G. 1989 . Towards protein tertiary structure recognition by means of associative memory hamiltonians. . Science , 246 : 371 – 373 .
  • Mejia , C. and Fogelman Soulie' , F. 1990 . “ Incorporating knowledge in multi — layer networks; the example of protein secondary structure prediction. ” . In Neuro — Computing , Edited by: Fogelman Soulie' , F. and Herault , J. 2 Heidelberg : Springer Verlag . Nato ASI Series, Vol. F 68
  • Kneller , D. G. , Cohen , F. E. and Langridge , R. 1990 . Improvement in protein secondary structure prediction by an enhanced neural network. . J. Mol. Biol. , 214 : 171 – 182 .
  • Qian , N. and Sejnowski , T. J. 1988 . Predicting the secondary structure of globular proteins using neural networks models. . J. Mol. Biol. , 20 : 865 – 884 .
  • Fariselli , P. , Compiani , M. and Casadio , R. 1993 . Predicting secondary structures of membrane proteins with neural networks. . Eur. Biophys. J. , 22 : 41 – 51 .
  • Vivarelli , F. , Giusti , G. , Villani , R. , Campanini , R. , Fariselli , P. , Compiani , M. and Casadio , R. 1995 . LGANN: a parallel system combining a local genetic algorithm and neural networks for the prediction of secondary structures of proteins. . Comp. Appli. Bioscience. , 11 : 253 – 260 .
  • Rost , B. and Sander , C. 1993 . Improved prediction of protein secondary structures by use of sequence profiles and neural networks. . Proc. Natl. Acad. Sci. USA. , 90 : 7558 – 7562 .
  • Bohr , H. , Bohr , J. , Brunak , S. , Cotterill , R. M. J. , Fredholm , H. , Lautrup , B. and Petersen , S. B. 1990 . A novel approach to prediction of the 3 — dimensional structures of protein backbones by neural networks. . FEBS Letts. , 261 : 43 – 46 .
  • Stolorz , P. , Lapedes , A. and Xia , Y. 1992 . Predicting protein secondary structure using neural net and statistical methods. . J. Mol. Biol. , 225 : 363 – 377 .
  • Bohr , H. , Bohr , J. , Brunak , S. , Cotterill , R. M. J. , Lautrup , B. , Norskov , L. , Olsen , O. H. and Petersen , S. B. 1988 . Protein secondary structure and homology by neural networks. . FEBS Letters , 241 : 223 – 228 .
  • Holley , M. L. and Karplus , M. 1989 . Protein secondary structure prediction with a neural network. . Proc. Natl. Acad. Sci. USA , 86 : 152 – 156 .
  • McGregor , M. J. , Flores , T. P. and Sternberg , M. J. E. 1989 . Prediction of β-turns in proteins using neural networks. . Protein Engineering. , 2 : 521 – 526 .
  • Kabsch , W. and Sander , C. 1983 . Dictionary of protein secondary structure: Pattern of hydrogen — bonded and geometrical features . Biopolymers , 22 : 2577 – 2637 .
  • Gamier , J. , Osguthorpe , D. J. and Robson , B. 1978 . Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. . J. Mot. Biol. , 120 : 97 – 120 .
  • Compiani , M. , Fariselli , P. and Casadio , R. 1992, 1992 . “ The statistical behaviour of perceptrons. In, Parallel Architectures and Neural Nets. Proceedings of the Conference WIRN Vietri ” . Edited by: Caianiello , E. 111 – 117 . Singapore : World Scientific .
  • Gibrat , J. F. , Garnier , J. and Robson , B. 1987 . Further developments of protein secondary structure prediction using information theory . J. Mol. Biol. , 198 : 425
  • Watkin , T. L. H. , Rau , A. and Biehl , M. 1993 . The statistical mechanics of learning a rule. . Rev. Mod. Phys. , 65 : 500 – 556 .
  • Cheng , B. and Titterington , D. M. 1994 . Neural networks: A review from a statistical perspective. . Statistical Science , 9 : 2 – 30 .
  • Compiani , M. , Fariselli , P. and Casadio , R. 1995 . The statistical behaviour of perceptrons: The case study of the prediction of protein structures. . Int. J. Neural Syst. , 6 : 195 – 199 . (supplement)
  • Compiani , M. , Fariselli , P. and Casadio , R. 1997 . Noise and randomlike behavior of perceptrons: Theory and application to protein structure prediction. . Phys. Rev. E , 55 : 1 – 10 .
  • Ruck , D. W. , Rogers , S. K. , Kabrisky , M. , Oxley , M. E. and Suter , B. W. 1990 . The multilayer perception as an approximation to a Bayes optimal discriminant function. . IEEE Trans. Neural Networks , 1 : 296 – 298 .
  • Compiani , M. , Fariselli , P. and Casadio , R. 1996 . “ Noise and randomlike behavior of perceptrons: theory and application to protein structure prediction. ” . In Applications and Science of Artificial Neural Networks II , Edited by: Rogers , S. K. and Ruck , D. W. 597 – 607 . Bellingham WA : SPIE — International Society for Optical Engineering .
  • Kabsch , W. and Sander , C. 1984 . On the use of sequence homologies to predict protein structure: Identical pentapeptides can have completely different conformations. . Proc. Natl. Acad. Sci. USA. , 81 : 1075 – 1078 .
  • Zhong , L. and Johnson , W. C. Jr. 1992 . Environment affects amino acid preference for secondary structure. . Proc. Natl. Acad. Sci. USA , 89 : 4462 – 4465 .
  • Cuff , J. A. and Barton , G. J. 1999 . Evaluation and improvement of multiple sequence methods for protein secondary structure prediction. . PROTEINS , 34 : 508 – 519 .
  • Rost , B. and Sander , C. 1994 . Combining evolutionary information and neural networks to predict protein secondary structure. . PROTEINS , 19 : 55 – 72 .
  • King , R. D. and Sternberg , M. J. E. 1996 . Identification and application of the concepts important for accurate and reliable protein secondary structure prediction. . Protein Sci. , 5 : 2298 – 2310 .
  • Salamov , A. A. and Solovyev , V. V. 1997 . Protein secondary structure prediction using local alignments. . J. Mol. Biol. , 268 : 31 – 36 .
  • Bohr , G. and Wolynes , P. G. 1992 . Initial events of protein folding from an information-processing viewpoint. . Phys. Rev. A , 46 : 5242 – 5247 .
  • Minsky , M. L. and Papert , S. 1988 . Perceptrons. (Expanded Edition). , Cambridge, MA : MIT Press .
  • Richard , M. D. and Lippmann , R. P. 1991 . Neural network classifiers estimate Bayesian a posteriori probabilities. . Neural Computation , 3 : 461 – 483 .
  • Rost , B. and Sander , C. 1993 . Prediction of protein secondary structure at better than 70% accuracy. . J. Mol. Biol. , 232 : 584 – 599 .
  • Moult , J. and Unger , R. 1991 . An analysis of protein folding pathways . Biochemistry , 30 : 3816 – 3824 .
  • Baldwin , R. L. and Rose , G. D. 1999 . Is protein folding hierarchic? I. Local structure and peptide folding. . TIBS , 24 January : 26 – 33 .
  • Baldwin , R. L. and Rose , G. D. 1999 . Is protein folding hierarchic? II. Folding intermediates and transition states. . TIBS , 24 February : 77 – 83 .
  • Yu , M. and King , J. 1984 . Single amino acid substitutions influencing the folding pathway of the phage P22 tail spike endorhamnosidase. . Proc. Natl. Acad. Sci. USA , 81 : 6584 – 6588 .
  • Casadio , R. , Compiani , M. , Fariselli , P. and Martelli , P.-L. 1999 . “ A database of minimally frustrated α-helical segments extracted from proteins according to an entropy criterion. In. Proceedings of the Seventh International Conference on Intelligent Tools for Molecular Biology (ISMB 99) ” . Edited by: Lengauer , T. , Schneider , R. , Bork , P. , Brutlag , G. , Glasgow , J. , Mewes , H.-W. and Zimmer , R. Vol. 7 , 68 – 76 . Menlo Park (CA) : AAAI Press .
  • Compiani , M. , Fariselli , P. , Martelli , P.-L. and Casadio , R. 1999 . Neural networks to study invariant features of protein folding. . Theor. Chem. Acc. , 101 : 21 – 26 .
  • Karplus , M. and Weaver , D. L. 1994 . Protein folding dynamics: The diffusion-collision model and experimental data. . Protein Sci. , 3 : 650 – 668 .
  • Kyte , J. and Doolittle , R. F. 1982 . A simple method for displaying the hydrophobic character of a protein. . J. Mol. Biol. , 157 : 103 – 132 .
  • Rost , B. , Casadio , R. , Fariselli , P. and Sander , C. 1995 . Prediction of helical transmembrane segments at 95% accuracy. . Protein Sci. , 4 : 124 – 132 .
  • Fariselli , P. and Casadio , R. 1996 . HTP: A neural network based method for predicting the topology of helical transmembrane domains in proteins. . Comput. Applic. Biosci. , 12 : 41 – 48 .
  • Casadio , R. , Fariselli , P. , Taroni , C. and Compiani , M. 1996 . A predictor of α-helix transmembrane domains of proteins based on neural networks. . Eur. Biophys. J. , 24 : 165 – 178 .
  • von Heijne , G. 1996 . “ Prediction of transmembrane protein topology. ” . In Protein Structure Prediction , Edited by: Sternberg , M. J. E. 101 – 111 . Oxford : Oxford Univ. Press .
  • Sonnhammer , E. L. , von Heijne , G. and Krogh , A. 1998 . A hidden Markov model for predicting transmembrane helices in protein sequences. . Ismb , 6 : 175 – 82 .
  • Tusnady , G. E. and Simon , I. 1998 . Principles governing amino acid composition of integral membrane proteins: application to topology prediction. . J Mol Biol. , 283 : 489 – 506 .
  • Rost , B. , Casadio , R. and Fariselli , P. 1996 . Refining neural network predictions for helical transmembrane proteins by dynamic programming. . Ismb , 4 : 192 – 200 .
  • Rost , B. , Fariselli , P. and Casadio , R. 1996 . Topology prediction for helical transmembrane proteins at 86% accuracy. . Protein Sci. , 5 : 1704 – 1718 .
  • Jones , D. T. , Taylor , W. R. and Thornton , J. M. 1994 . A model recognition approach to the prediction of all-helical membrane protein structure and topology. . Biochemistry , 33 : 3038 – 3049 .
  • Cserzo , M. , Wallin , E. , Simon , I. , von Heijne , G. and Elofsson , A. 1997 . Prediction of transmembrane α-helices in prokaryotic membrane proteins: the dense alignment surface method. . Prot. Engng. , 10 : 673 – 676 .
  • Betz , S. F. 1993 . Disulfide bonds and the stability of globular proteins. . Protein Sci. , 2 : 1551 – 1558 .
  • Freire , E. 1993 . Structural thermodynamics: Prediction of protein stability and protein binding energy. . Arch. Biochem. Biophys. , 303 : 181 – 184 .
  • Privalov , P. L. and Gill , S. J. 1988 . Stability of protein structure and hydrophobic interaction. . Adv. Prot. Chem. , 39 : 191 – 324 .
  • Casadio , R. , Compiani , M. , Fariselli , P. and Vivarelli , F. 1995 . Predicting free energy contributions to the conformational stability of folded proteins from the residue sequence with radial basis function networks. . Ismb , 3 : 81 – 88 .
  • Harrison , P. M. and Sternberg , M. J. E. 1994 . Analysis and classification of disulfide connectivity in proteins. . J. Mol. Biol. , 244 : 448 – 463 .
  • Harrison , P. M. and Sternberg , M. J. E. 1996 . The disulfide β-cross: from cystine geometry and clustering to classification of small disulfide-rich protein folds. . J. Mol. Biol. , 264 : 603 – 623 .
  • Fiser , A. , Cserzo , M. , Tudos , E. and Simon , I. 1992 . Different sequence environment of cysteines and half cystines in proteins. . FEBS Lett. , 302 : 117 – 120 .
  • Muskal , S. M. , Holbrook , R. S. and Kim , S. H. 1990 . Prediction of the disulfide-bonding state of cysteine in proteins. . Protein Engng. , 3 : 667 – 672 .
  • Fariselli , P. , Riccobelli , P. and Casadio , R. 1999 . The role of evolutionary information in predicting the disulfide bonding state of cysteines in proteins. . PROTEINS , 36 : 340 – 346 .
  • Kuntz , I. D. , Thomason , J. F. and Oshiro , C. M. 1989 . Distance Geometry. . Methods in Enzym. , 177 : 159 – 205 .
  • Mirny , L. and Domany , E. 1996 . Protein fold recognition and dynamics in the space of contact maps. . PROTEINS , 26 : 391 – 410 .
  • Thomas , D. J. , Casari , G. and Sander , C. 1996 . The prediction of protein contacts from multiple sequence alignments. . Protein Engng , 9 : 941 – 948 .
  • Olmea , O. and Valencia , A. 1997 . Improving contact predictions by the combination of correlated mutations and other sources of sequence information. . Fold. Des. , 2 : S25 – 32 .
  • Lund , O. , Frimand , K. , Gorodkin , J. , Bohr , H. , Bohr , J. , Hansen , J. and Brunak , S. 1997 . Protein distance constraints predicted by neural networks and probability density functions. . Protein Engng. , 10 : 1241 – 1248 .
  • Fariselli , P. and Casadio , R. 1998 . “ A neural network based method for predicting contact maps of protein. In, Proc. of the World Multiconference on Systemics ” . In Cybernetics and Informatics (SCI'98). Vol. 1 , 527 – 533 . Orlando, , USA
  • Fariselli , P. and Casadio , R. 1999 . Neural network based predictor of residue contacts in proteins. . Prof. Engng. , 12 : 15 – 21 .
  • Baldi , P. and Brunak , S. 1998 . Bioinformatics , 300 Cambridge : MIT Press .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.