3,225
Views
353
CrossRef citations to date
0
Altmetric
Original Articles

How not to develop a quantitative structure–activity or structure–property relationship (QSAR/QSPR)

, &
Pages 241-266 | Received 28 Nov 2008, Accepted 30 Mar 2009, Published online: 04 Dec 2010

References

  • Hansch , C , Maloney , PP , Fujita , T and Muir , RM . 1962 . Correlation of biological activity of phenoxyacetic acids with Hammett substituent constants and partition coefficients . Nature , 194 : 178 – 180 .
  • Mills , EJ . 1884 . On melting point and boiling point as related to composition . Phil Mag. Ser. , 5 17 : 173 – 187 .
  • Livingstone , D . 1995 . Data Analysis for Chemists , Oxford, , UK : Oxford University Press .
  • Walker , JD , Dearden , JC , Schultz , TW , Jaworska , J and Comber , MHI . 2003 . “ QSARs for new practitioners ” . In QSARs for Pollution Prevention, Toxicity Screening, Risk Assessment, and Web Applications , Edited by: Walker , JD . 3 – 18 . Pensacola, FL : SETAC Press .
  • Walker , JD , Jaworska , J , Comber , MHI , Schultz , TW and Dearden , JC . 2003 . Guidelines for developing and using quantitative structure–activity relationships . Environ. Toxicol. Chem. , 22 : 1653 – 1665 .
  • Cronin , MTD and Schultz , TW . 2003 . Pitfalls in QSAR . J. Theoret. Chem. (Theochem) , 622 : 39 – 51 .
  • Eriksson , L , Jaworska , J , Worth , AP , Cronin , MTD , McDowell , RM and Gramatica , P . 2003 . Methods for reliability and uncertainty assessment for applicability evaluations of classification- and regression-based QSARs . Environ. Health Persp. , 111 : 1361 – 1375 .
  • Livingstone , DJ . 2004 . “ Building QSAR models: a practical guide ” . In Predicting Chemical Toxicity and Fate , Edited by: Cronin , MTD and Livingstone , DJ . 151 – 170 . Boca Raton, FL : CRC Press .
  • Tropsha , A and Golbraikh , A . 2007 . Predictive QSAR modeling workflow, model applicability domains, and virtual screening . Curr. Pharmaceutical Design , 13 : 3494 – 3504 .
  • Golbraikh , A and Tropsha , A . 2002 . Beware of q2! . J. Mol. Graph. Modell. , 20 : 269 – 276 .
  • Gramatica , P . 2007 . Principles of QSAR models validation: internal and external . QSAR Comb. Sci. , 26 : 694 – 701 .
  • Jaworska , JS , Comber , M , Auer , C and Van Leeuwen , CJ . 2003 . Summary of a workshop on regulatory acceptance of (Q)SARs for human health and environmental endpoints . Environ. Health Persp. , 111 : 1358 – 1360 .
  • OECD Principles for the Validation of (Q)SARs . http://www.oecd.org/dataoecd/33/37/37849783.pdf (last accessed November 2008)
  • OECD, Environment Directorate . Joint Meeting of The Chemicals Committee and The Working Party on Chemicals, Pesticides and Biotechnology , http://www.olis.oecd.org/olis/2004doc.nsf/LinkTo/NT00009192/$FILE/JT00176183.PDF (last accessed November 2008)
  • Unger , SH and Hansch , C . 1973 . On model building in structure–activity relationships. A reexamination of adrenergic blocking activity of β-halo-β-arylalkylamines . J. Med. Chem. , 16 : 745 – 749 .
  • Poda , GI , Landsittel , DP , Brumbaugh , K , Sharp , DS , Frasch , HF and Demchuk , E . 2001 . Random sampling or ‘random’ model in skin flux measurements? [Commentary on “Investigation of the mechanism of flux across human skin in vitro by quantitative structure-permeability relationships”] . Eur. J. Pharm. Sci. , 14 : 197 – 200 .
  • Yoshida , K and Niwa , T . 2006 . Quantitative structure–activity studies on inhibition of HERG potassium channels . J. Chem. Inf. Model. , 46 : 1371 – 1378 .
  • Coi , A , Massarelli , I , Murgia , L , Saraceno , M , Calderone , V and Bianucci , AM . 2006 . Prediction of hERG potassium channel affinity by the CODESSA approach . Bioorg. Med. Chem. , 14 : 3153 – 3159 .
  • Johnson , SR and Jurs , PC . 1997 . “ Prediction of acute mammalian toxicity from molecular structure for a diverse set of substituted anilines using regression analysis and computational neural networks ” . In Computer-Assisted Lead Finding and Optimization: Current Tools for Medicinal Chemistry , Edited by: van de Waterbeemd , H , Testa , B and Folkers , G . 29 – 48 . Weinheim : Wiley-VCH .
  • CDC . Registry of Toxic Effects of Chemical Substances (RTECS) . http://www.cdc.gov/niosh/rtecs/ (last accessed November 2008)
  • Matthews , EJ , Kruhlak , NL , Benz , RD and Contrera , JF . 2004 . Assessment of the health effects of chemicals in humans: I. QSAR estimation of the maximum recommended therapeutic dose (MRTD) and no effect level (NOEL) of organic chemicals based on clinical trial data . Curr. Drug Discov. Technol. , 1 : 61 – 76 .
  • EPA . FDAMDD: FDA Maximum (Recommended) Daily Dose . http://www.epa.gov/ncct/dsstox/sdf_fdamdd.html (last accessed November 2008)
  • Geronikaki , A , Vicini , P , Theophilidis , G , Lagunin , A , Poroikov , V and Dearden , JC . 2003 . Study of local anesthetic activity of some derivatives of 3-aminobenzo-[d]-isothiazole . SAR QSAR Environ. Res. , 14 : 485 – 495 .
  • Dearden , JC , Bradburne , SJA , Cronin , MTD and Solanki , P . 1988 . “ The physical significance of molecular connectivity ” . In QSAR 1988 , Edited by: Turner , JE , England , MW , Schultz , TW and Kwaak , NJ . 43 – 50 . Oak Ridge, TN : US Department of Energy .
  • Lu , X , Tao , S , Cao , J and Dawson , RW . 1999 . Prediction of fish bioconcentration factors of nonpolar organic pollutants based on molecular connectivity indices . Chemosphere , 39 : 987 – 999 .
  • Nendza , M . 1998 . Structure–Activity Relationships in Environmental Sciences , London : Chapman & Hall .
  • Basketter , DA , Roberts , DW , Cronin , M and Scholes , EW . 1992 . The value of the local lymph-node assay in quantitative structure-activity investigations . Contact Dermatitis , 27 : 137 – 142 .
  • Randić , M and Basak , SC . 2001 . On use of the variable connectivity index 1χf in QSAR: toxicity of aliphatic ethers . J. Chem. Inf. Comput. Sci. , 41 : 614 – 618 .
  • Eriksson , L , Hermens , JLM , Johansson , E , Verhaar , HJM and Wold , S . 1995 . Multivariate analysis of aquatic toxicity data with PLS . Aquat. Sci. , 57 : 217 – 241 .
  • Todeschini , R and Consonni , V . 2000 . Handbook of Molecular Descriptors , Weinheim : Wiley-VCH .
  • Kubinyi , H . 2006 . “ Validation and predictivity of QSAR models ” . In QSAR and Molecular Modelling in Rational Design of Bioactive Molecules , Edited by: Sener , EA and Yalcin , I . 30 – 33 . Ankara : CADDD Society .
  • Tong , W , Perkins , R , Strelitz , R , Collantes , ER , Keenan , S , Welsh , WJ , Branham , WS and Sheehan , DM . 1997 . Quantitative structure–activity relationships (QSARs) for estrogen binding to the estrogen receptor: predictions across species . Environ. Health Persp. , 106 : 1116 – 1124 .
  • Ivanciuc , O . 2000 . QSAR comparative study of Wiener descriptors for weighted molecular graphs . J. Chem. Inf. Comput. Sci. , 40 : 1412 – 1422 .
  • Gramatica , P , Navas , N and Todeschini , R . 1998 . 3D-modelling and prediction by WHIM descriptors. Part 9. Chromatographic relative retention time and physico-chemical properties of polychlorinated biphenyls (PCBs) . Chemomet. Intell. Lab. Sys. , 40 : 53 – 63 .
  • Niska , H , Tuppurainen , K , Skön , J-P , Mallett , AK and Kolehmainen , M . 2008 . Characterisation of the chemical and biological properties of molecules with QSAR/QSPR and chemical grouping, and its application to a group of alkyl ethers . SAR QSAR Environ. Res. , 19 : 263 – 284 .
  • Dearden , JC . 2006 . In silico prediction of aqueous solubility . Expert Opin. Drug. Discov. , 1 : 31 – 52 .
  • Rytting , E , Lentz , KA , Chen , X-Q , Qian , F and Venkatesh , S . 2005 . Aqueous and cosolvent solubility data for drug-like organic compounds . Am. Assoc. Pharm. Sci. J. , 7 : E78 – E105 .
  • Jorgensen , WL and Duffy , EM . 2002 . Prediction of drug solubility from structure . Adv. Drug. Deliv. Rev. , 54 : 355 – 366 .
  • Gramatica , P , Pilutti , P and Papa , E . 2004 . Validated QSAR prediction of OH tropospheric degradation of VOCs: splitting into training-test sets and consensus modelling . J. Chem. Inf. Comput. Sci. , 44 : 1794 – 1802 .
  • Abshear , T , Banik , GM , D'Souza , ML , Nedwed , K and Peng , C . 2006 . A model validation and consensus building environment . SAR QSAR Environ. Res. , 17 : 311 – 321 .
  • Zhu , H , Tropsha , A , Fourches , D , Varnek , A , Papa , E , Gramatica , P , Öberg , T , Dao , P , Cherkasov , A and Tetko , IV . 2008 . Combinatorial QSAR modeling of chemical toxicants against Tetrahymena pyriformis . J. Chem. Inf. Model. , 48 : 766 – 784 .
  • Ghafourian , T and Dearden , JC . 2000 . The use of atomic charges and orbital energies as hydrogen-bonding-donor parameters for QSAR studies: comparison of MNDO, AM1 and PM3 methods . J. Pharm. Pharmacol. , 52 : 603 – 610 .
  • Dearden , JC , Netzeva , TI and Bibby , R . 2003 . “ A comparison of commercially available software for the prediction of partition coefficient ” . In Designing Drugs and Crop Protectants: Processes, Problems and Solutions , Edited by: Ford , M , Livingstone , D , Dearden , J and van de Waterbeemd , H . 169 – 170 . Oxford : Blackwell .
  • Dearden , JC and Schüürmann , G . 2003 . Quantitative structure–property relationships for predicting Henry's law constant from molecular structure . Environ. Toxicol. Chem. , 22 : 1755 – 1770 .
  • Hartung , T , Bremer , S , Casati , S , Coecke , S , Corvi , R , Fortaner , S , Gribaldo , L , Halder , M , Hoffmann , S , Janusch Roi , A , Prieto , P , Sabbioni , E , Scott , L , Worth , A and Zuang , V . 2004 . A modular approach to the ECVAM principles on test validity . ATLA , 32 : 467 – 472 .
  • Roncaglioni , A . 2008 . Data exploration and knowledge extraction: their application to the study of endocrine disrupting chemicals , Milton Keynes, , UK : Ph.D. Thesis, The Open University .
  • Netzeva , TI , Worth , A , Aldenberg , T , Benigni , R , Cronin , MT , Gramatica , P , Jaworska , JS , Kahn , S , Klopman , G , Marchant , CA , Myatt , G , Nikolova-Jeliazkova , N , Patlewicz , GY , Perkins , R , Roberts , D , Schultz , T , Stanton , DW , van de Sandt , JJ , Tong , W , Veith , G and Yang , C . 2005 . Current status of methods for defining the applicability domain of (quantitative) structure–activity relationships. The report and recommendations of ECVAM Workshop 52 . ATLA , 33 : 155 – 173 .
  • Jaworska , J , Nikolova-Jeliaskova , N and Aldenberg , T . 2005 . QSAR applicability domain estimation by projection of the training set in descriptor space: a review . ATLA , 33 : 445 – 459 .
  • Kubinyi , H . 2002 . Chemical similarity and biological activities . J. Braz. Chem. Soc. , 13 : 717 – 726 .
  • Maggiora , GM . 2006 . On outliers and activity cliffs – why QSAR often disappoints . J. Chem. Inf. Model. , 46 : 1535
  • Papa , E , Villa , F and Gramatica , P . 2005 . Statistically validated QSARs, based on theoretical descriptors, for modeling aquatic toxicity of organic chemicals in Pimephales promelas (fathead minnow) . J. Chem. Inf. Model. , 45 : 1256 – 1266 .
  • TOPKAT software . http://www.accelrys.com (last accessed November 2008)
  • Dearden , JC , Cronin , MTD , Schultz , TW and Lin , DT . 1995 . QSAR study of the toxicity of nitrobenzenes to Tetrahymena pyriformis . Quant. Struct.–Act. Relat. , 14 : 427 – 432 .
  • Niazi , A , Jameh-Bozorghi , S and Nori-Shargh , D . 2008 . Prediction of toxicity of nitrobenzenes using ab initio and least squares support vector machines . J. Hazardous Mat. , 151 : 603 – 609 .
  • Lipnick , RL . 1991 . Outliers: their origin and use in the classification of molecular mechanisms of toxicity . Sci. Tot. Environ. , 109/110 : 131 – 153 .
  • Aptula , AO , Jeliazkova , NG , Schultz , TW and Cronin , MTD . 2005 . The better predictive model: high q2 for the training set or low root mean square error of prediction for the test set? . QSAR Comb. Sci. , 24 : 385 – 396 .
  • Doniger , S , Hofmann , T and Yeh , J . 2002 . Predicting CNS permeability of drug molecules: comparison of neural network and support vector machine algorithms . J. Comput. Biol. , 9 : 849 – 864 .
  • Hansen , NT , Kouskoumvekaki , I , Jørgensen , FS , Brunak , S and Jónsdóttir , SÓ . 2006 . Prediction of pH-dependent aqueous solubility of druglike molecules . J. Chem. Inf. Model. , 46 : 2601 – 2609 .
  • Young , D , Martin , T , Venkatapathy , R and Harten , P . 2008 . Are the chemical structures in your QSAR correct? . QSAR Comb. Sci. , 27 : 1337 – 1345 .
  • Flynn , GL . 1990 . “ Physicochemical determinants of skin absorption ” . In Principles of Route-to-Route Extrapolation for Risk Assessment , Edited by: Gerrity , TR and Henry , CJ . 93 – 127 . Amsterdam : Elsevier .
  • Kirschner , LA , Moody , RP , Doyle , E , Bose , R , Jeffery , J and Chu , I . 1997 . The prediction of skin permeability by using physicochemical data . ATLA , 25 : 359 – 370 .
  • Cronin , MTD , Dearden , JC , Moss , GP and Murray-Dickson , G . 1999 . Investigation of the mechanism of flux across human skin in vitro by quantitative structure–permeability relationships . Eur. J. Pharm. Sci. , 7 : 325 – 330 .
  • Frasch , HF and Landsittel , DP . 2002 . Regarding the sources of data analyzed with quantitative structure–skin permeability relationship methods (commentary on ‘Investigation of the mechanism of flux across human skin in vitro by quantitative structure-permeability relationships’) . Eur. J. Pharm. Sci. , 15 : 399 – 403 .
  • Hewitt , M , Madden , JC , Rowe , PH and Cronin , MTD . 2007 . Structure-based modelling in reproductive toxicology: (Q)SARs for the placental barrier . SAR QSAR Environ. Res. , 18 : 57 – 76 .
  • Jalali-Heravi , M , Shahbazikhah , P , Zekavat , B and Ardejani , MS . 2007 . Principal component analysis-ranking method for the simulation of 13C nuclear magnetic resonance spectra of xanthones using artificial neural networks . QSAR Comb. Sci. , 26 : 764 – 772 .
  • Cambridgesoft . ChemBioFinder.com Scientific Database Gateway , http://chembiofinder.cambridgesoft.com/chembiofinder/SimpleSearch.aspx (last accessed November 2008)
  • US National Library of Medicine . ChemIDplus Advanced , http://chem.sis.nlm.nih.gov/chemidplus (last accessed November 2008)
  • Daylight Chemical Information Systems Inc. SMILES – A Simplified Chemical Language . http://www.daylight.com/dayhtml/doc/theory/theory.smiles.html (last accessed November 2008)
  • IUPAC . The IUPAC International Chemical Identifier (InChI™) . http://www.iupac.org/inchi (last accessed November 2008)
  • Lide , DR , ed. 1992–1993 . CRC Handbook of Chemistry and Physics, , 73rd , Boca Raton, FL : CRC Press .
  • Delgado , EJ , Alderete , JB and Jaña , GA . 2003 . A simple QSPR model for predicting soil sorption coefficients of polar and nonpolar organic compounds from molecular formula . J. Chem. Inf. Comput. Sci. , 43 : 1928 – 1932 .
  • Gedeck , P , Rohde , B and Bartels , C . 2006 . QSAR – how good is it in practice? Comparison of descriptor sets on an unbiased cross section of corporate data sets . J. Chem. Inf. Model. , 46 : 1924 – 1936 .
  • Quinn , FR . 1982 . The quantitative structure–activity relationship of rifamycin B amide and hydrazide toxicity in mice . Il Pharmaco , 37 : 3 – 12 .
  • Dearden , JC . 1991 . The QSAR prediction of melting point, a property of environmental relevance . Sci. Tot. Environ. , 109/110 : 59 – 68 .
  • Borth , DM . 1996 . Optimal experimental designs for (possibly) censored data . Chemomet. Intell. Lab. Sys. , 32 : 25 – 35 .
  • Borth , DM and Wilhelm , MS . 2002 . Confidence limits for normal type I censored regression . Chemomet. Intell. Lab. Sys. , 63 : 117 – 128 .
  • Topliss , JG and Costello , RJ . 1972 . Chance correlations in structure–activity studies using multiple regression analysis . J. Med. Chem. , 15 : 1066 – 1068 .
  • Romanelli , GP , Cafferata , LFR and Castro , EA . 2000 . An improved QSAR study of toxicity of saturated alcohols . J. Mol. Struct. – Theochem , 504 : 261 – 265 .
  • Benigni , R , Conti , L , Crebelli , R , Rodomonte , A and Vari , MR . 2005 . Simple and α,β-unsaturated aldehydes: correct prediction of genotoxic activity through structure–activity relationship models . Environ. Mol. Mutagen. , 46 : 268 – 280 .
  • Topliss , JG and Edwards , RP . 1979 . Chance factors in studies of quantitative structure–activity relationships . J. Med. Chem. , 22 : 1238 – 1244 .
  • Tropsha , A , Gramatica , P and Gombar , VK . 2003 . The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models . QSAR Comb. Sci. , 22 : 69 – 77 .
  • Erös , D , Kéri , G , Kövesdi , I , Szánti-Kis , C , Mészáros , G and Örfi , L . 2004 . Comparison of predictive ability of water solubility QSPR models generated by MLR, PLS and ANN methods . Mini-Rev. Med. Chem. , 4 : 167 – 177 .
  • Ghasemi , J and Saaidpour , S . 2007 . QSPR prediction of aqueous solubility of drug-like organic compounds . Chem. Pharm. Bull. , 55 : 669 – 674 .
  • Roy , PP , Leonard , JT and Roy , K . 2008 . Exploring the impact of size of training sets for the development of predictive QSAR models . Chemomet. Intell. Lab. Sys. , 90 : 31 – 42 .
  • Katritzky , AR , Wang , Y , Sild , S , Tamm , T and Karelson , M . 1998 . QSPR studies on vapor pressure, aqueous solubility, and the prediction of water–air partition coefficients . J. Chem. Inf. Comput. Sci. , 38 : 720 – 725 .
  • Labute , P . 2000 . A widely applicable set of descriptors . J. Mol. Graph. Model. , 18 : 464 – 477 .
  • Zhong , C and Hu , Q . 2003 . Estimation of the aqueous solubility of organic compounds using molecular connectivity indices . J. Pharm. Sci. , 92 : 2284 – 2294 .
  • Yaffe , D , Cohen , Y , Espinosa , G , Arenas , A and Giralt , F . 2001 . A fuzzy ARTMAP based on quantitative structure-property relationships (QSPRs) for predicting aqueous solubility of organic compounds . J. Chem. Inf. Comput. Sci. , 41 : 1177 – 1207 .
  • Abraham , MH and Martins , F . 2004 . Human skin permeation and partition: general linear free-energy relationship analyses . J. Pharm. Sci. , 93 : 1508 – 1523 .
  • Dearden , JC and Cronin , MTD . 2006 . “ Quantitative structure-activity relationships (QSAR) in drug design ” . In Smith and Williams’ Introduction to the Principles of Drug Design and Action, , 4th , Edited by: Smith , HJ . 185 – 209 . Boca Raton, FL : Taylor & Francis .
  • Jalali-Heravi , M and Parastar , F . 1999 . Computer modelling of the rate of glycine conjugation of some benzoic acid derivatives: a QSAR study . Quant. Struct.–Act. Relat. , 18 : 134 – 138 .
  • Abraham , MH , Acree , WE , Mintz , C and Payne , S . 2008 . Effect of anesthetic structure on inhalation anesthesia: implications for the mechanism . J. Pharm. Sci. , 97 : 2373 – 2384 .
  • Umetrics – Experts in multivariate data analysis and design of experiments . http://www.umetrics.com (last accessed November 2008)
  • Devillers , J and Doré , JC . 2002 . e-Statistics for deriving QSAR models . SAR QSAR Environ. Res. , 13 : 409 – 416 .
  • QSAR – Working with statistics . http://www.scripps.edu/rc/softwaredocs/msi/cerius45/qsar/working_with_stats.html (last accessed November 2008)
  • QSAR World –Statistics . http://www.qsarworld.com/statistics.php (last accessed November 2008)
  • Fatemi , MH and Gharaghani , S . 2007 . A novel QSAR model for prediction of apoptosis-inducing activity of 4-aryl-4-H-chromenes based on support vector machine . Bioorg. Med. Chem. , 15 : 7746 – 7754 .
  • Fang , K-T , Yin , H and Liang , Y-Z . 2004 . New approach by Kriging models to problems in QSAR . J. Chem. Inf. Comput. Sci. , 44 : 2106 – 2113 .
  • Abraham , MH , Sánchez-Moreno , R and Cometto-Muñiz , JE . 2007 . A quantitative structure–activity analysis on the relative sensitivity of the olfactory and the nasal trigeminal chemosensory systems . Chem. Senses , 32 : 711 – 719 .
  • Tute , MS . 1971 . “ Principles and practice of Hansch analysis: a guide to structure–activity correlation for the medicinal chemist ” . In Advances in Drug Research , Edited by: Harper , NJ and Simmonds , AB . Vol. 6 , 1 – 77 . London : Academic Press .
  • Roy , DR , Parthasarathi , R , Maiti , B , Subramanian , V and Chattaraj , PK . 2005 . Electrophilicity as a possible descriptor for toxicity prediction . Bioorg. Med. Chem. , 13 : 3405 – 3412 .
  • Freidig , AP , Verhaar , HJM and Hermens , JLM . 1999 . Quantitative structure–property relationships for the chemical reactivity of acrylates and methacrylates . Environ. Toxicol. Chem. , 18 : 1133 – 1139 .
  • Raevsky , OA , Grigor’ev , VYu , Weber , EE and Dearden , JC . 2008 . Classification and quantification of the toxicity of chemicals to guppy, fathead minnow and rainbow trout: Part 1. Nonpolar narcosis mode of action . QSAR Comb. Sci. , 27 : 1274 – 1281 .
  • Golbraikh , A and Tropsha , A . 2002 . Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection . J. Comput.-Aided Mol. Design , 16 : 357 – 369 .
  • Leonard , JT and Roy , K . 2006 . On selection of training and test sets for the development of predictive QSAR models . QSAR Comb. Sci. , 25 : 235 – 251 .
  • Furusjö , E , Svenson , A , Rahmberg , M and Andersson , M . 2006 . The importance of outlier detection and training set selection for reliable environmental QSAR predictions . Chemosphere , 63 : 99 – 108 .
  • Eriksson , L , Johansson , E , Müller , M and Wold , S . 2000 . On the selection of the training set in environmental QSAR analysis when compounds are clustered . J. Chemom. , 14 : 599 – 616 .
  • Golbraikh , A , Shen , M , Xiao , Z , Xiao , Y-D , Lee , K-H and Tropsha , A . 2003 . Rational selection of training and test sets for the development of validated QSAR models . J. Comput.-Aided Mol. Design , 17 : 241 – 253 .
  • Hemmateenajad , B , Javadnia , K and Elyasi , M . 2007 . Quantitative structure–retention relationship for the Kovats retention indices of a large set of terpenes: a combined data splitting–feature selection strategy . Anal. Chim. Acta , 592 : 72 – 81 .
  • Schultz , TW , Netzeva , TI and Cronin , MTD . 2003 . Selection of data sets for QSARs: analyses of Tetrahymena toxicity from aromatic compounds . SAR QSAR Environ. Res. , 14 : 59 – 81 .
  • Benigni , R and Bossa , C . 2008 . Predictivity of QSAR . J. Chem. Inf. Model. , 48 : 971 – 980 .
  • Jorgensen , WL . 2006 . QSAR/QSPR and proprietary data . J. Chem. Inf. Model. , 46 : 937
  • Tetko , IV . 2008 . Personal communication to J.C. Dearden . 16 June
  • Devillers , J , Bintein , S , Domine , D and Karcher , W . 1995 . A general QSAR model for predicting the toxicity of organic chemicals to luminescent bacteria (Microtox® test) . SAR QSAR Environ. Res. , 4 : 29 – 38 .
  • Tetko , IV , Sushko , I , Pandey , AK , Zhu , H , Tropsha , A , Papa , E , Öberg , T , Todeschini , R , Fourches , D and Varnek , A . 2008 . Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis; focusing on applicability domain and overfitting by variable selection . J. Chem. Inf. Model. , 48 : 1733 – 1746 .
  • Hansch , C and Leo , A . 1995 . Exploring QSAR: Fundamentals and Applications in Chemistry and Biology , Vol. 1 , Washington, DC : American Chemical Society .
  • Rowe , P . 2007 . Essential Statistics for the Pharmaceutical Sciences , Chichester : Wiley .
  • Johnson , SR . 2008 . The trouble with QSAR (or how I learned to stop worrying and embrace fallacy) . J. Chem. Inf. Model. , 48 : 25 – 26 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.