179
Views
8
CrossRef citations to date
0
Altmetric
Articles

Combined 2D and 3D-QSAR, molecular modelling and docking studies of pyrazolodiazepinones as novel phosphodiesterase 2 inhibitors

&
Pages 905-937 | Received 22 May 2014, Accepted 29 Jul 2014, Published online: 17 Nov 2014

References

  • C.J. Woolf and Q. Ma, Nociceptors-noxious stimulus detectors, Neuron 55 (2007), pp. 353–364.
  • R.J. Chambers, K. Abrams, N.Y. Garceau, A.V. Kamath, C.M. Manley, S.C. Lilley, D.A. Otte, D.O. Scott, A.L. Sheils, D.A. Tess, A.S. Vellekoop, Y. Zhang, and K.T. Lam, A new chemical tool for exploring the physiological function of the PDE2 isozyme, Bioorg. Med. Chem. Lett. 16 (2006), pp. 307–310.
  • S.E. Martinez, A.Y. Wu, N.A. Glavas, X.B. Tang, S. Turley, W.G. Hol, and J.A. Beavo, The two GAF domains in phosphodiesterase 2A have distinct roles in dimerization and in cGMP binding, Proc. Natl. Acad. Sci. U. S. A. 99 (2002), pp. 13260–13265.
  • R. Gupta, G. Kumar, and R.S. Kumar, An update on cyclicnucleotide phosphodi-esterase (PDE) inhibitors: Phosphodiesterases and drug selectivity, Meth. Find. Exp. Clin. Pharmacol. 27 (2005), pp. 101–118.
  • J. De Vente, M. Markerink-van Ittersum, and J.S.H. Vles, ANP-mediated cGMP signaling and phosphodiesterase inhibition in the rat cervical spinal cord, J. Chem. Neuroanat. 31 (2006), pp. 263–274.
  • I. Tegeder, A. Schmidtko, E. Niederberger, P. Ruth, and G. Geisslinger, Dual effects of spinally delivered 8-bromo-cyclic guanosine mono-phosphate (8-bromo-cGMP) in formalin-induced nociception in rats, Neurosci. Lett. 332 (2002), pp. 146–150.
  • T. Podzuweit, P. Nennstiel, and A. Müller, Isozyme selective inhibition of cGMP-stimulated cyclic nucleotide phosphodiesterases by erythro-9-(2-hydroxy-3-nonyl) adenine, Cell. Signalling 7 (1995), pp. 733–738.
  • C. Burnouf, A. Berecibar, and M. Navet, Novel substituted pyrazolo[4,3‒e] diazepines, pharmaceutical compositions containing them, use as medicinal products and processes for preparing them, PCT Int. Appl. 34,211, WO2001049689 (2001).
  • M.S. Plummer, J. Cornicelli, H. Roark, D.J. Skalitzky, C.J. Stankovic, S. Bove, J. Pandit, A. Goodman, J. Hicks, A. Shahripour, D. Beidler, X.K. Lu, B. Sanchez, C. Whitehead, R. Sarver, T. Braden, R. Gowan, X.Q. Shen, K. Welch, A. Ogden, N. Sadagopan, H. Baum, H. Miller, C. Banotai, C. Spessard, and S. Lightle, Discovery of potent, selective, bioavailable phosphodiesterase 2 (PDE2) inhibitors active in an osteoarthritis pain model. Part I: Transformation of selective pyrazolodiazepinone phosphodiesterase 4 (PDE4) inhibitors into selective PDE2 inhibitors, Bioorg. Med. Chem. Lett. 23 (2013), pp. 3438–3442.
  • M.S. Plummer, J. Cornicelli, H. Roark, D.J. Skalitzky, C.J. Stankovic, S. Bove, J. Pandit, A. Goodman, J. Hicks, A. Shahripour, D. Beidler, X.K. Lu, B. Sanchez, C. Whitehead, R. Sarver, T. Braden, R. Gowan, X.Q. Shen, K. Welch, A. Ogden, N. Sadagopan, H. Baum, H. Miller, C. Banotai, C. Spessard, and S. Lightle, Discovery of potent selective bioavailable phosphodiesterase 2 (PDE2) inhibitors active in an osteoarthritis pain model. Part II: Optimization studies and demonstration of in vivo efficacy, Bioorg. Med. Chem. Lett. 23 (2013), pp. 3443–3447.
  • R.D. Cramer, D.E. Patterson, and J.D. Bunce, Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins, J. Am. Chem. Soc. 110 (1988), pp. 5959–5967.
  • G. Klebe, U. Abraham, and T. Mietzner, Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity, J. Med. Chem. 37 (1994), pp. 4130–4146.
  • R.D. Cramer, Topomer CoMFA: A design methodology for rapid lead optimization, J. Med. Chem. 46 (2003), pp. 374–388.
  • L.B. Salum and A.D. Andricopulo, Fragment-based QSAR: Perspectives in drug Design, Mol. Diversity 13 (2009), pp. 277–285.
  • M. Rarey, B. Kramer, T. Lengauer, and G.A. Klebe, A fast flexible docking method using an incremental construction algorithm, J. Mol. Biol. 261 (1996), pp. 470–489.
  • SYBYL X Molecular Modeling Software, Tripos Associates, V. 2.0, St Louis, USA, 2012; software available at http://www.tripos.com (under evaluation licence).
  • M. Clark, R.D. Cramer, and N.J. Van Opdenbosh, Validation of the general purpose tripos 5.2 force field, Comput. Chem. 10 (1989), pp. 982–1012.
  • A. Golbraikh and A. Tropsha, Beware of q2!, J. Mol. Graph. Model. 20 (2002), pp. 269–276.
  • S.S. Nilewar and M.K. Kathiravan, 3D CoMFA, CoMSIA, topomer CoMFA and HQSAR studies on aromatic acid esters for carbonic anhydrase inhibitory activity, J. Chemom. 28 (2014), pp. 60–70.
  • A.V. Raichurkar, U.A. Shah, and V.M. Kulkarni, 3D-QSAR of novel phosphodiesterase-4 inhibitors by genetic function approximation, Med. Chem. 7 (2011), pp. 543–552.
  • M.T. Makhija and V.M. Kulkarni, 3D-QSAR and molecular modeling of HIV-1 integrase inhibitors, J. Comput. Aid. Mol. Des. 16 (2002), pp. 181–200.
  • A.V. Raichurkar and V.M. Kulkarni, Understanding the antitumor activity of novel hydroxysemicarbazide derivatives as ribonucleotide reductase inhibitors using CoMFA and CoMSIA, J. Med. Chem. 46 (2003), pp. 4419–4427.
  • S.G. Bhansali and V.M. Kulkarni, 3D-QSAR of p38 mitogen activated protein kinase inhibitors: Pyridopyridazin-6-ones (part 1), Res. Rep. Med. Chem. 3 (2013), pp. 29–41.
  • R.J. Jilek and R.D. Cramer, Topomers: A validated protocol for their self consistent generation, J. Chem. Inf. Comput. Sci. 44 (2004), pp. 1221–1227.
  • R.D. Cramer, Leadhopping- and beyond, Expert Opin. Drug Discovery 1 (2006), pp. 1–12.
  • M.A. Avery, M. Alvim-Gaston, C.R. Rodrigues, E.J. Barreiro, F.E. Cohen, Y.A. Sabnis, and J.R. Woolfrey, Structure-activity relationships of the antimalarial agent artemisinin. 6. The development of predictive in vitro potency models using CoMFA and HQSAR methodologies, J. Med. Chem. 45 (2002), pp. 292–303.
  • Glide, version 5.8, Schrödinger LLC, New York, NY, 2012; software available at http://www.schrodinger.com.
  • R.A. Friesner, J.L. Banks, R.B. Murphy, T.A. Halgren, J.J. Klicic, D.T. Mainz, M.P. Repasky, E.H. Knoll, M. Shelley, J.K. Perry, D.E. Shaw, P. Francis, and P.S. Shenkin, Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy, J. Med. Chem. 47 (2004), pp. 1739–1749.
  • T.A. Halgren, R.B. Murphy, R.A. Friesner, H.S. Beard, L.L. Frye, W.T. Pollard, and J.L. Banks, Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening, J. Med. Chem. 47 (2004), pp. 1750–1759.
  • Maestro, version 9.3, Schrödinger LLC, New York, 2012; software available at http://www.schrodinger.com.
  • LigPrep, version 2.5, Schrödinger LLC, New York, 2012; software available at http://www.schrodinger.com.
  • S.G. Bhansali and V.M. Kulkarni, Pharmacophore generation, atom-based 3D-QSAR, docking, and virtual screening studies of p38-α mitogen activated protein kinase inhibitors: Pyridopyridazin-6-ones (part 2), Res. Rep. Med. Chem. 4 (2014), pp. 1–21.
  • G. Chang, W.C. Guida, and W.C. Still, An internal-coordinate Monte Carlo method for searching conformational space, J. Am. Chem. Soc. 111 (1989), pp. 4379–4386.
  • I. Kolossvary and W.C. Guida, Low mode search. An efficient, automated computational method for conformational analysis: Application to cyclic and acyclic alkanes and cyclic peptides, J. Am. Chem. Soc. 118 (1996), pp. 5011–5019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.