358
Views
48
CrossRef citations to date
0
Altmetric
Articles

ToxRead: A tool to assist in read across and its use to assess mutagenicity of chemicalsFootnote

, , , &
Pages 999-1011 | Received 05 Aug 2014, Accepted 15 Sep 2014, Published online: 15 Dec 2014

References

  • E. Benfenati, G. Gini, S. Hoffmann, and R. Luttik, Comparing in vivo, in vitro, in silico methods and integrated strategies for chemical assessment: Problems and prospects, ATLA 38 (2010), pp. 153–166.
  • E. Benfenati and R. Gonella Diaza, A. Cassano, S. Pardoe, G. Gini, C. Mays, R. Knauf, and L. Benighaus, The acceptance of in silico models for REACH: Requirements, barriers, and perspectives, Chem. Cent. J. 5 (2011), p. 58.
  • D.J. Livingstone, The characterization of chemical structures using molecular properties: A survey, J. Chem. Inform. Comput. Sci. 40 (2000), pp. 195–209.
  • OECD, The OECD QSAR toolbox, version 3.1, 2014; software available at http://www.oecd.org/chemicalsafety/risk-assessment/theoecdqsartoolbox.htm.
  • AMBIT, Version 2.4.11, 2014; software available at http://ambit.sourceforge.net/.
  • G. Patlewicz, D.W. Roberts, A. Aptula, K. Blackburn, and B. Hubesch, Workshop Report: Use of ‘read-across’ for chemical safety assessment under REACH, Regul. Toxicol. Pharmacol. 65 (2013), pp. 226–228.
  • R. Benigni, C. Bossa, N.G. Jeliazkova, T.I. Netzeva, and A.P. Worth, The Benigni/Bossa rulebase for mutagenicity and carcinogenicity - A module of Toxtree, EUR-Scientific and Technical Report Series, EUR 23241 EN, Office for the Official Publications of the European Communities, Luxembourg, 2008.
  • R. Benigni and C. Bossa, Structural alerts for carcinogenicity, and the Salmonella assay system: A novel insight through the chemical relational databases technology, Mutat. Res.-Rev. Mutat. 659 (2008), pp. 248–261.
  • J. Kazius, R. Mcguire, and R. Bursi, Derivation and validation of toxicophores for mutagenicity prediction, J. Med. Chem. 48 (2005), pp. 312–320.
  • H.S. Rosenkranz, Y.P. Zhang, and G. Klopman, Studies on the potential for genotoxic carcinogenicity of fragrances and other chemicals, Food Chem. Toxicol. 36 (1998), pp. 687–696.
  • R. Benigni, T.I. Netzeva, E. Benfenati, C. Bossa, R. Franke, C. Helma, E. Hulzebos, C. Marchant, A. Richard, Y.T. Woo, and C. Yang, The expanding role of predictive toxicology: An update on the (Q)SAR models for mutagens and carcinogens, J. Environ. Sci. Health C 25 (2007), pp. 53–97.
  • E. Benfenati, R. Benigni, D.M. Demarini, C. Helma, D. Kirkland, T.M. Martin, P. Mazzatorta, G. Ouedraogo-Arras, A.M. Richard, B. Schilter, W.G. Schoonen, R.D. Snyder, and C. Yang, Predictive models of carcinogenicity and mutagenicity: Frameworks, state-of-the-art and perspectives, J. Environ. Sci. Health C 27 (2009), pp. 57–90.
  • B.N. Ames, The detection of environmental mutagens and potential, Cancer 53 (1984), pp. 2030–2040.
  • J. Ashby, Fundamental structural alerts to potential carcinogenicity or noncarcinogenicity, Environ. Mutagen. 7 (1985), pp. 919–921.
  • W.W. Piegorsch and E. Zeiger, Measuring intra-assay agreement for the Ames salmonella assay, in Statistical Methods in Toxicology, Lecture Notes in Medical Informatics, L. Hotorn, ed., Springer-Verlag, Berlin, 1991, pp. 35–41.
  • C. Hansch, P.P. Malony, T. Fujita, and R.M. Muir, Correlation of biological activity of phenoxyacetic acids with Hammett substituent constants with partition coefficients, Nature 194 (1962), pp. 178–180.
  • J.A. Miller and E.C. Miller, Searches for ultimate chemical carcinogens and their reactions with cellular macromolecules, Cancer 47 (1981), pp. 2327–2345.
  • J. Ashby and R.W. Tennant, Chemical structure, salmonella mutagenicity and extent of carcinogenicity as indicators of genotoxic carcinogenesis among 222 chemicals tested by the U.S. NCI/NTP, Mutat. Res. 204 (1988), pp. 17–115.
  • Q. Liao, J. Yao, and S. Yuan, Prediction of mutagenic toxicity by combination of recursive partitioning and support vector machines, Mol. Divers. 11 (2007), pp. 59–72.
  • M. Zheng, Z. Liu, C. Xue, W. Zhu, K. Chen, X. Luo, and H. Jiang, Mutagenic probability estimation of chemical compounds by a novel molecular electrophilicity vector and support vector machine, Bioinformatics 22 (2006), pp. 2099–2106.
  • T. Ferrari and G. Gini, An open source multistep model to predict mutagenicity from statistical analysis and relevant structural alerts, Chem. Cent. J. 4(Suppl. 1) (2010), p. 4.
  • A. Perrotta, D. Malacarne, M. Taningher, R. Pesenti, M. Paolucci, and S. Parodi, A computerized connectivity approach for analyzing the structural basis of mutagenicity in salmonella and its relationship with rodent carcinogenicity, Mol. Mutagen. 28 (1996), pp. 31–50.
  • R.D. Snyder, G.S. Pearl, G. Mandakes, W.N. Choy, F. Goodsaid, and I.Y. Rosenblum, Assessment of the sensitivity of the computational programs DEREK, TOPKAT and MCASE in the prediction of the genotoxicity of pharmaceutical molecules, Environ. Mol. Mutagen. 43 (2004), pp. 143–158.
  • N. Golbamaki Bakhtyari, G. Raitano, E. Benfenati, T.M. Martin, and D. Young, Comparison of in silico models for prediction of mutagenicity, J. Environ. Sci. Health C 31 (2013), pp. 45–66.
  • A. Cassano, G. Raitano, E. Mombelli, A. Fernandez, J. Cester, A. Roncaglioni, and E. Benfenati, Evaluation of QSAR Models for the prediction of Ames genotoxicity: A retrospective exercise on the chemical substances registered under the EU REACH regulation, J. Environ. Sci. Health C 32 (2014), pp. 273–298.
  • E. Benfenati, A Manganaro, and G. Gini, VEGA-QSAR: AI inside a platform for predictive toxicology, Proceedings of Workshop PAI 2013, 5 December 2013, Turin, Italy, pp. 21–28.
  • E. Benfenati, G. Raitano, and G. Gini, Overtaking barriers between toxicologists and computers: The example of VEGA, Proceedings of IHCI 2013 –Multi Conference on Computer Science and Information Systems, Prague, 22–24 July 2013, pp. 268–272.
  • G. Gini, T. Ferrari, D. Cattaneo, N.G. Bakhtyari, A. Manganaro, and E. Benfenati, Automatic knowledge extraction from chemical structures: The case of mutagenicity prediction, SAR QSAR Environ. Res. 24 (2013), pp. 365–383.
  • The ANTARES project: Alternative Non-Testing methods Assessed for REACH Substances. Funded by the LIFE+ EC Programme 2010–2012. Website available at: http://www.antares-life.eu/.
  • K. Hansen, S. Mika, T. Schroeter, A. Sutter, A. ter Laak, T. Steger-Hartmann, N. Heinrich, and K.R. Müller, Benchmark data set for in silico prediction of Ames mutagenicity, J. Chem. Inf. Model. 49 (2009), pp. 2077–2081.
  • Chemistry Development Kit; software available at: http://sourceforge.net/projects/cdk/.
  • Java Universal Network/Graph Framework; software available at: http://jung.sourceforge.net/.
  • HyperSQL; software available at: http://hsqldb.org/.
  • M. Floris, A. Manganaro, O. Nicolotti, R. Medda, G.F. Mangiatordi, and E. Benfenati, A generalizable definition of chemical similarity for read-across, J. Cheminf. in press.
  • European Chemicals Agency (ECHA), The Use of Alternatives to Testing on Animals for the REACH Regulation. Second report under Article 117(3) of the REACH Regulation, ECHA, Helsinki, 2014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.