295
Views
28
CrossRef citations to date
0
Altmetric
Articles

Comparison of global and mode of action-based models for aquatic toxicity

, , &
Pages 245-262 | Received 21 Nov 2014, Accepted 10 Feb 2015, Published online: 18 Mar 2015

References

  • T.I. Netzeva, M. Pavan, and A.P. Worth, Review of (quantitative) structure-activity relationships for acute aquatic toxicity, QSAR Comb. Sci. 27 (2008), pp. 77–90.
  • R. Benigni and A.M. Richard, QSARS of mutagens and carcinogens: Two case studies illustrating problems in the construction of models for noncongeneric chemicals, Mutat. Res.-Genet. Tox. 371 (1996), pp. 29–46.
  • T.W. Schultz, G.D. Sinks, and A.P. Bearden, QSAR in aquatic toxicology: A mechanism of action approach comparing toxic potency to Pimephales promelas, Tetrahymena pyriformis, and Vibrio fischeri, in Comparative QSAR, J. Devillers, ed., Taylor & Francis, New York, 1998, pp. 51–109.
  • S.G. Abernethy, D. MacKay, and L.S. McCarty, ‘Volume fraction’ correlation for narcosis in aquatic organisms: The key role of partitioning, Environ. Toxicol. Chem. 7 (1988), pp. 469–481.
  • M.T.D. Cronin and T.W. Schultz, Structure-toxicity relationships for phenols to Tetrahymena pyriformis, Chemosphere 32 (1996), pp. 1453–1468.
  • O.G. Mekenyan and G.D. Veith, Relationships between descriptors for hydrophobicity and soft electrophilicity in predicting toxicity, SAR QSAR Environ. Res. 1 (1993), pp. 335–344.
  • H. Yuan, Y.-Y. Wang, and Y.-Y. Cheng, Mode of action-based local QSAR modeling for the prediction of acute toxicity in the fathead minnow, J. Molec. Graph. Model. 26 (2007), pp. 327–335.
  • W.F. Zheng and A. Tropsha, Novel variable selection quantitative structure-property relationship approach based on the k-nearest-neighbor principle, J. Chem. Inf. Comp. Sci. 40 (2000), pp. 185–194.
  • M. Cassotti, D. Ballabio, V. Consonni, A. Mauri, I.V. Tetko, and R. Todeschini, Prediction of acute aquatic toxicity toward Daphnia magna by using the GA-kNN method, Altern. Lab. Anim. 42 (2014), pp. 31–41.
  • T.M. Martin, P. Harten, R. Venkatapathy, S. Das, and D.M. Young, A hierarchical clustering methodology for the estimation of toxicity, Toxicol. Mech. Method. 18 (2008), pp. 251–266.
  • C.X. Xue, R.S. Zhang, H.X. Liu, X.J. Yao, M.C. Liu, Z.D. Hu, and B.T. Fan, An Accurate QSPR study of O–H bond dissociation energy in substituted phenols based on support vector machines, J. Chem. Inf. Comp. Sci. 44 (2004), pp. 669–677.
  • D.V. Eldred, C.L. Weikel, P.C. Jurs, and K.L.E. Kaiser, Prediction of fathead minnow acute toxicity of organic compounds from molecular structure, Chem Res. Toxicol. 12 (1999), pp. 670–678.
  • E. Papa, F. Villa, and P. Gramatica, Statistically validated QSARs, based on theoretical descriptors, for modeling aquatic toxicity of organic chemicals in Pimephales promelas (fathead minnow), J. Chem. Inf. Model. 45 (2005), pp. 1256–1266.
  • J.A. Castillo-Garit, Y. Marrero-Ponce, J. Escobar, F. Torrens, and R. Rotondo, A novel approach to predict aquatic toxicity from molecular structure, Chemosphere 73 (2008), pp. 415–427.
  • J.F. Contrera, E.J. Matthews, and R.D. Benz, Predicting the carcinogenic potential of pharmaceuticals in rodents using molecular structural similarity and E-state indices, Regul. Toxicol. Pharm. 38 (2003), pp. 243–259.
  • K.L.E. Kaiser and S.P. Niculescu, Using probabilistic neural networks to model the toxicity of chemicals to the fathead minnow (Pimephales promelas): A study based on 865 chemicals, Chemosphere 38 (1999), pp. 3237–3245.
  • T.M. Martin and D.M. Young, Prediction of the acute toxicity (96-h LC50) of organic compounds to the fathead minnow (Pimephales promelas) using a group contribution method, Chem Res. Toxicol. 14 (2001), pp. 1378–1385.
  • T. Öberg, A general structure-property relationship to predict the enthalpy of vaporisation at ambient temperatures, SAR QSAR Environ. Res. 18 (2007), pp. 127–139.
  • T. Öberg, A QSAR for baseline toxicity: Validation, domain of application, and prediction, Chem Res. Toxicol. 17 (2004), pp. 1630–1637.
  • A. Cherkasov, Inductive QSAR descriptors. Distinguishing compounds with antibacterial activity by artificial neural networks, Int. J. Mol. Sci. 6 (2005), pp. 63–86.
  • Virtual Computational Chemistry Laboratory (VCCLAB), Associative Neural Network, VCCLAB, Munich, 2007; software available at http://www.vcclab.org/lab/asnn/.
  • L. He and P.C. Jurs, Assessing the reliability of QSAR model's predictions, J. Mol. Graph. Model. 23 (2005), pp. 503–523.
  • H. Könemann, Quantitative structure-activity relationships in fish toxicity studies Part 1: Relationship for 50 industrial pollutants, Toxicology 19 (1981), pp. 209–221.
  • US Enviromental Protection Agency (US EPA), Estimation Programs Interface Suite™ for Microsoft® Windows, v 4.11. (2014), US EPA, Washington DC; software available at http://www.epa.gov/opptintr/exposure/pubs/episuitedl.htm.
  • C.L. Russom, S.P. Bradbury, S.J. Broderius, D.E. Hammermeister, and R.A. Drummond, Predicting modes of toxic action from chemical structure: Acute toxicity in the fathead minnow (Pimephales Promelas), Environ. Toxicol. Chem. 16 (1997), pp. 948–967.
  • M.T.D. Cronin, A.O. Aptula, J.C. Duffy, T.I. Netzeva, P.H. Rowe, I.V. Valkova, and T. Wayne Schultz, Comparative assessment of methods to develop QSARs for the prediction of the toxicity of phenols to Tetrahymena pyriformis, Chemosphere 49 (2002), pp. 1201–1221.
  • L. Claeys, F. Iaccino, C.R. Janssen, P. Van Sprang, and F. Verdonck, Development and validation of a quantitative structure–activity relationship for chronic narcosis to fish, Environ. Toxicol. Chem. 32 (2013), pp. 2217–2225.
  • M. Nendza and M. Müller, Discriminating toxicant classes by mode of action: 2. Physico-chemical descriptors, Quant. Struct.-Act. Rel, 19 (2000), pp. 581–598.
  • A.O. Aptula, T.I. Netzeva, I.V. Valkova, M.T.D. Cronin, T.W. Schultz, R. Kühne, and G. Schüürmann, Multivariate discrimination between modes of toxic action of phenols, Quant. Struct.-Act. Rel, 21 (2002), pp. 12–22.
  • G. Schüürmann, A.O. Aptula, R. Kühne, and R.-U. Ebert, Stepwise discrimination between four modes of toxic action of phenols in the Tetrahymena pyriformis assay, Chem Res. Toxicol. 16 (2003), pp. 974–987.
  • B. Niu, Y. Jin, W. Lu, and G. Li, Predicting toxic action mechanisms of phenols using AdaBoost Learner, Chemom. Intell. Lab. Syst. 96 (2009), pp. 43–48.
  • S. Spycher, M. Nendza, and J. Gasteiger, Comparison of different classification methods applied to a mode of toxic action data set, QSAR Comb. Sci. 23 (2004), pp. 77–791.
  • U. Norinder, P. Lidén, and H. Boström, Discrimination between modes of toxic action of phenols using rule based methods, Mol. Divers. 10 (2006), pp. 207–212.
  • X.J. Yao, A. Panaye, J.P. Doucet, H.F. Chen, R.S. Zhang, B.T. Fan, M.C. Liu, and Z.D. Hu, Comparative classification study of toxicity mechanisms using support vector machines and radial basis function neural networks, Anal. Chim. Acta 535 (2005), pp. 259–273.
  • S. Ren, Predicting three narcosis mechanisms of aquatic toxicity, Toxicol. Lett. 133 (2002), pp. 127–139.
  • L. Michielan, L. Pireddu, M. Floris, and S. Moro, Support vector machine (SVM) as alternative tool to assign acute aquatic toxicity warning labels to chemicals, Mol. Inform. 29 (2010), pp. 51–64.
  • S.C. Basak, G.D. Grunwald, G.E. Host, G.J. Niemi, and S.P. Bradbury, A comparative study of molecular similarity, statistical, and neural methods for predicting toxic modes of action, Environ. Toxicol. Chem. 17 (1998), pp. 1056–1064.
  • T.M. Martin, C.M. Grulke, D.M. Young, C.L. Russom, N.Y. Wang, C.R. Jackson, and M.G. Barron, Prediction of aquatic toxicity mode of action using linear discriminant and random forest models, J. Chem. Inf. Model. 53 (2013), pp. 2229–2239.
  • S. Spycher, E. Pellegrini, and J. Gasteiger, Use of structure descriptors to discriminate between modes of toxic action of phenols, J. Chem. Inf. Model. 45 (2005), pp. 200–208.
  • Un Environmental Protection Agency (US EPA), ASTER (Assessment Tools for the Evaluation of Risk), US EPA, Washington DC, 2012; software available at http://www.epa.gov/med/Prods_Pubs/aster.htm.
  • Insecticide Resistance Action Committee (IRAC), IRAC MoA Classification Scheme, IRAC International MoA Working Group, 2012; software available at http://www.irac-online.org/eClassification/.
  • L. Eriksson, J.S. Jaworska, A.P. Worth, M.T.D. Cronin, R.M. McDowell, and P. Gramatica, Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs, Environ. Health Persp. 111 (2003), pp. 1361–1375.
  • D.C. Montgomery, Introduction to Linear Regression Analysis, John Wiley & Sons, New York, 1982.
  • R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, Germany, 2000.
  • L.B. Kier and L.H. Hall, Molecule Structure Description: The Electrotopological State, Academic Press, New York, 1999.
  • Talete, Dragon Version 6, Talete SRL, Milan, Italy, 2006; software available at http://www.talete.mi.it/products/dragon_description.htm.
  • H.J.M. Verhaar, C.J. van Leeuwen, and J.L.M. Hermens, Classifying environmental pollutants. 1: Structure-activity relationships for prediction of aquatic toxicity, Chemosphere 25 (1992), pp. 471–491.
  • A.K. Ghose, V.N. Viswanadhan, and J.J. Wendoloski, Prediction of hydrophilic (lipophilic) properties of small organic molecules using fragmental methods: An analysis of ALOGP and CLOGP methods, J. Phys. Chem. 102 (1998), pp. 3762–3772.
  • H. Zhu, T.M. Martin, L. Ye, A. Sedykh, D.M. Young, and A. Tropsha, Quantitative structure−activity relationship modeling of rat acute toxicity by oral exposure, Chem Res. Toxicol. 22 (2009), pp. 1913–1921.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.