875
Views
18
CrossRef citations to date
0
Altmetric
Articles

Quantitative structure–permeability relationships at various pH values for acidic and basic drugs and drug-like compoundsFootnote

&
Pages 701-719 | Received 19 Jun 2015, Accepted 19 Aug 2015, Published online: 18 Sep 2015

References

  • W.N. Charman, C.J.H. Porter, S. Mithani, and J.B. Dressman, Physicochemical and physiological mechanisms for the effects of food on drug absorption: The role of lipids and pH, J. Pharm. Sci. 86 (1997), pp. 269–282.
  • A. Avdeef, Absorption and Drug Development: Solubility, Permeability, and Charge State, 2nd ed., Wiley, Hoboken, NJ, 2012.
  • Y. Tsume, P. Langguth, A. Garcia-Arieta, and G.L. Amidon, In silico prediction of drug dissolution and absorption with variation in intestinal pH for BCS class II weak acid drugs: Ibuprofen and ketoprofen, Biopharm. Drug Dispos. 33 (2012), pp. 366–377.
  • D.T. Manallack, The acid–base profile of a contemporary set of drugs: Implications for drug discovery, SAR QSAR Environ. Res. 20 (2009), pp. 611–655.
  • E.H. Kerns, L. Di, S. Petusky, M. Farris, R. Ley, and P. Jupp, Combined application of parallel artificial membrane permeability assay and Caco-2 permeability assays in drug discovery, J. Pharm. Sci. 93 (2004), pp. 1440–1453.
  • Y. Sambuy, I.D. Angelis, G. Ranaldi, M.L. Scarino, A. Stammati, and F. Zucco, The Caco-2 cell line as a model of the intestinal barrier: Influence of cell and culture-related factors on Caco-2 cell functional characteristics, Cell Biol. Toxicol. 21 (2005), pp. 1–26.
  • P. Artursson, Epithelial transport of drugs in cell culture. I: A model for studying the passive diffusion of drugs over intestinal absorptive (Caco-2) cells, J. Pharm. Sci. 79 (1990), pp. 476–482.
  • M. Kansy, F. Senner, and K. Gubernator, Physicochemical high throughput screening: Parallel artificial membrane permeation assay in the description of passive absorption processes, J. Med. Chem. 41 (1998), pp. 1007–1010.
  • B. Faller, Artificial membrane assay to assess permeability, Curr. Drug Metab. 9 (2008), pp. 886–892.
  • C. Zhu, L. Jiang, T.-M. Chen, and K.-K. Hwang, A comparative study of artificial membrane permeability assay for high throughput profiling of drug absorption potential, Eur. J. Med. Chem. 37 (2002), pp. 399–407.
  • M. Kansy, A. Avdeef, and H. Fischer, Advances in screening for membrane permeability: High-resolution PAMPA for medicinal chemists, Drug Discov. Today Technol. 1 (2004), pp. 349–355.
  • K. Sugano, M. Kansy, P. Artursson, A. Avdeef, S. Bendels, L. Di, G.F. Ecker, B. Faller, H. Fischer, G. Gerebtzoff, H. Lennernäs, and F. Senner, Coexistence of passive and carrier-mediated processes in drug transport, Nature Rev. Drug Discov. 9 (2010), pp. 597–614.
  • J. Ruell, Membrane-based drug assays. Permeability assays and oral absorption modeling can make the difference between drugs and dregs, Mod. Drug Discov. (2003), pp. 28–30.
  • M. Kansy, F. Senner, and K. Gubernator, Physicochemical high throughput screening: Parallel artificial membrane permeability assay in the description of passive absorption processes, J. Med. Chem. 41 (1998), pp. 1007–1010.
  • M. Fairstein, R. Swissa, and A. Dahan, Regional-dependent intestinal permeability and BCS classification: Elucidation of pH-related complexity in rats using pseudoephedrine, AAPS J. 15 (2013), pp. 589–597.
  • K. Sugano, H. Hamada, M. Machida, H. Ushio, K. Saitoh, and K. Terada, Optimized conditions of bio-mimetic artificial membrane permeation assay, Int. J. Pharm. 228 (2001), pp. 181–188.
  • M. Velicky, D.F. Bradley, K.Y. Tam, and R.A.W. Dryfe, In situ artificial membrane assay under hydrodynamic control: Permeability-pH profiles of warfarin and verapamil, Pharm. Res. 27 (2010), pp. 1644–1658.
  • J.A. Ruell, K.L. Tsinman, and A. Avdeef, PAMPA—a drug absorption in vitro model: 5. Unstirred water layer in iso-pH mapping assays and pKaflux—optimized design (pOD-PAMPA), Eur. J. Pharm. Sci. 20 (2003), pp. 393–402.
  • M. Oja and U. Maran, The permeability of an artificial membrane for wide range of pH in human gastrointestinal tract: Experimental measurements and quantitative structure-activity relationship, Mol. Inf. 34 (2015), pp. 493–506.
  • R. Ano, Y. Kimura, M. Shima, R. Matsuno, T. Ueno, and M. Akamatsu, Relationships between structure and high-throughput screening permeability of peptide derivatives and related compounds with artificial membranes: Application to prediction of Caco-2 cell permeability, Bioorg. Med. Chem. 12 (2004), pp. 257–264.
  • M. Fujikawa, R. Ano, K. Nakao, R. Shimizu, and M. Akamatsu, Relationships between structure and high-throughput screening permeability of diverse drugs with artificial membranes: Application to prediction of Caco-2 cell permeability, Bioorg. Med. Chem. 13 (2005), pp. 4721–4732.
  • M. Fujikawa, K. Nakao, R. Shimizu, and M. Akamatsu, QSAR study on permeability of hydrophobic compounds with artificial membranes, Bioorg. Med. Chem. 15 (2007), pp. 3756–3767.
  • C. Acharya, P.R. Seo, J.E. Polli, and A.D. MacKerell, Computational model for predicting chemical substituent effects on passive drug permeability across parallel artificial membranes, Mol. Pharm. 5 (2008), pp. 818–828.
  • K. Nakao, M. Fujikawa, R. Shimizu, and M. Akamatsu, QSAR application for the prediction of compound permeability with in silico descriptors in practical use, J. Comput. Aided Mol. Des. 23 (2009), pp. 309–319.
  • A. Avdeef and O. Tsinman, PAMPA – a drug absorption in vitro model 13. Chemical selectivity due to membrane hydrogen bonding: In combo comparison of HDM-, DOPC-, and DS-PAMPA models, Eur. J. Pharm. Sci. 28 (2006), pp. 43–50.
  • Wiki-pKaTM database; available at http://www.in-adme.com/wiki_pka.php.
  • R.J. Prankerd, Critical compilation of pKa values for pharmaceutical substances, in Profiles of Drug Substances, Excipients, and Related Methodology, H.G. Brittain (ed), Vol. 33, Elsevier, New York, 2007.
  • S.H. Cheeseman, S.E. Hattox, M.M. McLaughlin, R.A. Koup, C. Andrews, C.A. Bova, J.W. Pav, T. Roy, J.L. Sullivan, and J.J. Keirns, Pharmacokinetics of nevirapine: Initial single-rising-dose study in humans, Antimicrob. Agents Chemother. 37 (1993), pp. 178–182.
  • E. Jiménez-Lozano, I. Marqués, D. Barrón, J.L. Beltrán, and J. Barbosa, Determination of pKa values of quinolones from mobility and spectroscopic data obtained by capillary electrophoresis and a diode array detector, Anal. Chim. Acta. 464 (2002), pp. 37–45.
  • M. Blas and B.R. McCord, Determination of trace levels of benzodiazepine in urine using capillary electrochromatography-time of flight mass spectrometry, Electrophoresis 29 (2008), pp. 2182–2192.
  • M.E. Dasenaki and N.S. Thomaidis, Multianalyte method for the determination of pharmaceuticals in wastewater samples using solid-phase extraction and liquid chromatography-tandem mass spectrometry, Anal. Bioanal. Chem. 407 (2015), pp. 4229–4245.
  • M. Shalaeva, J. Kenseth, F. Lombardo, and A. Bastin, Measurement of dissociation constants (pKa values) of organic compounds by multiplexed capillary electrophoresis using aqueous and cosolvent buffers, J. Pharm. Sci. 97 (2008), pp. 2581–2606.
  • M.A. Martinez-Gomez, R.M. Villanueve-Camanas, S. Sagrado, and M.J. Medina-Hernandez, Potential of human serum albumin as chiral selector of basic drugs in affinity electrokinetic chromatography-partial filling technique, Electrophoresis 27 (2006), pp. 4364–4374.
  • C. Salerno, A.M. Carlucci, and C. Bregni, Study of in vitro drug release and percutaneous absorption of fluconazole from topical dosage forms, AAPS PharmSciTech. 11 (2010), pp. 986–993.
  • M.M. Al Omari, M.I. El-Barghouthi, M.B. Zughul, J.E.D. Davies, and A.A. Badwan, Comparative study of the inclusion complexation of pizotifen and ketotifen with native and modified cyclodextrins, J. Solution Chem. 37 (2008), pp. 249–264.
  • A. Checa, V.G. Soto, S. Hernandez-Cassou, and J. Saurine, Fast determination of pKa values of reverse transcriptase inhibitor drugs for AIDS treatment by using pH-gradient flow-injection analysis and multivariate curve resolution, Anal. Chim. Acta 554 (2005), pp. 177–183.
  • MacroModel version 9, Schrödinger, , Portland, OR, USA, 2000; software available at http://www.schrodinger.com.
  • J.J.P. Stewart, MOPAC Program Package 7.0, QCPE Bloomiagton, IN, USA, 1993.
  • CODESSA PRO User’s manual, University of Florida, Gainsville, FL, USA, 2005.
  • Syracuse Research Corporation, Physical/chemical Property Database–(PHYSPROP), SRC Environmental Science Centre, Syracuse, NY, USA, 1994.
  • T. Cheng, Y. Zhao, X. Li, F. Lin, Y. Xu, X. Zhang, Y. Li, R. Wang, and L. Lai, Computation of octanol-water partition coefficients by guiding an additive model with knowledge, J. Chem. Inf. Model. 47 (2007), pp. 2140–2148.
  • E. Bolton, Y. Wang, P.A. Thiessen, and S.H. Bryant, PubChem: Integrated Platform of Small Molecules and Biological Activities, in Annual Reports in Computational Chemistry, Volume 4, American Chemical Society, Washington DC, 2008, Chapter 12.
  • PubChem database, available at http://pubchem.ncbi.nlm.nih.gov.
  • JChem for Excel 14.7.2800.480, 2014, ChemAxon; available at http://www.chemaxon.com.
  • A.C. Atkinson, Plots, Transformation, Regression: An Introduction to Graphical Methods of Diagnostic Regression Analysis, Oxford University Press, Oxford, UK, 1985.
  • J. Jaworska, N. Nikolova-Jeliazkova, and T. Aldenberg, QSAR applicability domain estimation by projection of the training set in descriptor space: A review, ATLA 33 (2005), pp. 445–459.
  • A. Tropsha, P. Gramatica, and V.K. Gombar, The importance of being earnest: Validation is the absolute essential for successful application and interpretation of QSPR models, QSAR Comb. Sci. 22 (2003), pp. 69–77.
  • T.I. Netzeva, A.P. Worth, T. Aldenberg, R. Benigni, M.T.D. Cronin, P. Gramatica, J.S. Jaworska, S. Kahn, G. Klopman, C.A. Marchant, G. Myatt, N. Nikolova-Jeliazkova, G.Y. Patlewicz, R. Perkins, D.W. Roberts, T.W. Schultz, D.T. Stanton, J.J.M. van de Sandt, W. Tong, G. Veith, and C. Yang, Current status of methods for defining the applicability domain of (quantitative) structure-activity relationships, Altern. Lab. Anim. 33 (2005), pp. 155–173.
  • V. Ruusmann, S. Sild, and U. Maran, QSAR DataBank – an approach for the digital organization and archiving of QSAR model information, J. Cheminf. 6 (2014), no. 25.
  • V. Ruusmann, S. Sild, and U. Maran, QSAR DataBank repository: Open and linked qualitative and quantitative structure–activity relationship models, J. Cheminf. 7 (2015), no. 32.
  • QsarDB repository; available at http://qsardb.org.
  • C. Suenderhauf, F. Hammann, A. Maunz, C. Helma, and J. Huwyler, Combinatorial QSAR modeling of human intestinal absorption, Mol. Pharm. 8 (2010), pp. 213–224.
  • T. Hou, J. Wang, W. Zhang, and X. Xu, ADME evaluation in drug discovery. 7. Prediction of oral absorption by correlation and classification, J. Chem. Inf. Model. 47 (2007), pp. 208–218.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.