182
Views
2
CrossRef citations to date
0
Altmetric
Articles

Global and local QSPR models to predict supercooled vapour pressure for organic compounds

, &
Pages 1033-1045 | Received 02 Sep 2015, Accepted 28 Oct 2015, Published online: 09 Dec 2015

References

  • P.C. van Noort, QSPRs for the estimation of subcooled liquid vapor pressures of polycyclic aromatic hydrocarbons, and of polychlorinated benzenes, biphenyls, dibenzo-p-dioxins, and dibenzofurans at environmentally relevant temperatures, Chemosphere 77 (2009), pp. 848–853.
  • M. Salahinejad and J. Ghasemi, 3D-QSAR studies on the toxicity of substituted benzenes to Tetrahymena pyriformis: CoMFA, CoMSIA and VolSurf approaches, Ecotoxicol. Environ. Saf. 105 (2014), pp. 128–134.
  • Chayawan and Vikas, Externally predictive single-descriptor based QSPRs for physico-chemical properties of polychlorinated-naphthalenes: Exploring relationships of logS(W), logK(OA), and logK(OW) with electron-correlation, J. Hazard. Mater. 296 (2015), pp. 68–81.
  • M. Gavrilescu, Fate of pesticides in the environment and its bioremediation, Eng. Life Sci. 5 (2005), pp. 497–526.
  • T. Puzyn, N. Suzuki, and M. Haranczyk, How do the partitioning properties of polyhalogenated POPs change when chlorine is replaced with bromine?, Environ. Sci. Technol. 42 (2008), pp. 5189–5195.
  • T. Puzyn, A. Gajewicz, A. Rybacka, and M. Haranczyk, Global versus local QSPR models for persistent organic pollutants: Balancing between predictivity and economy, Struct. Chem. 22 (2011), pp. 873–884.
  • R. Balasubramanian and J. He, Fate and Transfer of Semivolatile Organic Compounds in a Multi-Compartment Environment, Urban Airborne Particulate Matter, Berlin, Springer, 2011, pp. 277–307.
  • X. Zeng, Z. Wang, Z. Ge, and H. Liu, Quantitative structure–property relationships for predicting subcooled liquid vapor pressure (PL) of 209 polychlorinated diphenyl ethers (PCDEs) by DFT and the position of Cl substitution (PCS) methods, Atmos. Environ. 41 (2007), pp. 3590–3603.
  • H. Xiao and F. Wania, Is vapor pressure or the octanol–air partition coefficient a better descriptor of the partitioning between gas phase and organic matter?, Atmos. Environ. 37 (2003), pp. 2867–2878.
  • M. Bordbar, J. Ghasemi, A.Y. Faal, and R. Fazaeli, Chemometric modeling to predict aquatic toxicity of benzene derivatives using stepwise-multi linear regression and partial least square, Asian J. Chem. 25 (2013), pp. 331–342.
  • A. Gajewicz, M. Haranczyk, and T. Puzyn, Predicting logarithmic values of the subcooled liquid vapor pressure of halogenated persistent organic pollutants with QSPR: How different are chlorinated and brominated congeners?, Atmos. Environ. 44 (2010), pp. 1428–1436.
  • M. Salahinejad and E. Zolfonoun, QSAR studies of the dispersion of SWNTs in different organic solvents, J. Nanopart. Res. 15 (2013), pp. 1–9.
  • R. Vikas, Exploring the role of quantum chemical descriptors in modeling acute toxicity of diverse chemicals to Daphnia magna, J. Mol. Graph. Model. 61 (2015), pp. 89–101.
  • T. Puzyn, N. Suzuki, M. Haranczyk, and J. Rak, Calculation of quantum-mechanical descriptors for QSPR at the DFT level: Is it necessary?, J. Chem. Inf. Model. 48 (2008), pp. 1174–1180.
  • X.-L. Zeng, X.-L. Zhang, and Y. Wang, QSPR modeling of n-octanol/air partition coefficients and liquid vapor pressures of polychlorinated dibenzo-p-dioxins, Chemosphere 91 (2013), pp. 229–232.
  • C. Liang and D.A. Gallagher, QSPR prediction of vapor pressure from solely theoretically-derived descriptors, J. Chem. Inf. Comp. Sci. 38 (1998), pp. 321–324.
  • G. Cruciani, P. Crivori, P.-A. Carrupt, and B. Testa, Molecular fields in quantitative structure–permeation relationships: The VolSurf approach, J. Mol. Struct.: THEOCHEM 503 (2000), pp. 17–30.
  • G. Cruciani, M. Pastor, and W. Guba, VolSurf: A new tool for the pharmacokinetic optimization of lead compounds, Eur. J. Pharm. Sci. 11 (2000), pp. S29–S39.
  • M. Sun, Y. Zheng, H. Wei, J. Chen, J. Cai, and M. Ji, enhanced replacement method-based quantitative structure–activity relationship modeling and support vector machine classification of 4-anilino-3-quinolinecarbonitriles as src kinase inhibitors, QSAR Combin. Sci. 28 (2009), pp. 312–324.
  • A.G. Mercader, P.R. Duchowicz, F.M. Fernández, and E.A. Castro, Replacement method and enhanced replacement method versus the genetic algorithm approach for the selection of molecular descriptors in QSPR/QSAR theories, J. Chem. Inf. Model. 50 (2010), pp. 1542–148.
  • A.G. Mercader, P.R. Duchowicz, F.M. Fernández, and E.A. Castro, Advances in the replacement and enhanced replacement method in QSAR and QSPR theories, J. Chem. Inf. Model. 51 (2011), pp. 1575–1581.
  • K. Roy, P. Chakraborty, I. Mitra, P.K. Ojha, S. Kar, and R.N. Das, Some case studies on application of “rm2” metrics for judging quality of quantitative structure–activity relationship predictions: Emphasis on scaling of response data, J. Comput. Chem. 34 (2013), pp. 1071–1082.
  • A. Golbraikh and A. Tropsha, Beware of q 2!, J. Mol. Graph. Model. 20 (2002), pp. 269–276.
  • R. Mannhold, H. Kubinyi, G. Folkers, and G. Cruciani, Molecular Interaction Fields: Applications in Drug Discovery and ADME Prediction, John Wiley & Sons, 2006.
  • A. Kungolos, Environmental Toxicology, WIT Press, Southampton, 2006.
  • A. Tropsha, Best practices for QSAR model development, validation, and exploitation, Mol. Inform. 29 (2010), pp. 476–488.
  • K. Roy, I. Mitra, S. Kar, P.K. Ojha, R.N. Das, and H. Kabir, Comparative studies on some metrics for external validation of QSPR models, Chem. Inf. Model. 52 (2012), pp. 396–408.
  • S. Dimitrov, G. Dimitrova, T. Pavlov, N. Dimitrova, G. Patlewicz, J. Niemela, and O. Mekenyan, A stepwise approach for defining the applicability domain of SAR and QSAR models, Chem. Inf. Model. 45 (2005), pp. 839–849.
  • J. Jaworska, N. Nikolova-Jeliazkova, and T. Aldenberg, QSAR applicability domain estimation by projection of the training set descriptor space: A review, Altern. Lab. Anim. 33 (2005), pp. 445–459.
  • T. Puzyn and J. Falandysz, Prediction of log K OA, TC, and log PL for 281 chlorosubstituted pyrenes as the key parameters featuring environmental transport and fate of these compounds, J. Environ. Sci. Health A 38 (2003), pp. 1761–1780.
  • I. Jolliffe, Principal Component Analysis, New York, NY, Wiley Online Library, 2002.
  • T. Puzyn and J. Falandysz, Computational estimation of logarithm of n-octanol/air partition coefficient and subcooled vapor pressures of 75 chloronaphthalene congeners, Atmos. Environ. 39 (2005), pp. 1439–1446.
  • M. Staikova, F. Wania, and D. Donaldson, Molecular polarizability as a single-parameter predictor of vapour pressures and octanol–air partitioning coefficients of non-polar compounds: A priori approach and results, Atmos. Environ. 38 (2004), pp. 213–225.
  • P. Geladi and B.R. Kowalski, Partial least-squares regression: A tutorial, Anal. Chim. Acta. 185 (1986), pp. 1–17.
  • Vikas and Chayawan, Externally predictive quantitative modeling of supercooled liquid vapor pressure of polychlorinated-naphthalenes through electron-correlation based quantum-mechanical descriptors, Chemosphere 95 (2014), pp. 448–454.
  • Z.-Y. Wang, X.-L. Zeng, and Z.-C. Zhai, Prediction of supercooled liquid vapor pressures and n-octanol/air partition coefficients for polybrominated diphenyl ethers by means of molecular descriptors from DFT method, Sci. Total Environ. 389 (2008), pp. 296–305.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.