287
Views
14
CrossRef citations to date
0
Altmetric
Articles

Modelling the aquatic toxicity of ionic liquids by means of VolSurf in silico descriptorsFootnote

, , , &
Pages 1-15 | Received 17 Sep 2015, Accepted 12 Nov 2015, Published online: 04 Jan 2016

References

  • R. Mancuso, C.S. Pomelli, C. Chiappe, R.C. Larock, and B. Gabriele, A recyclable and base-free method for the synthesis of 3-iodothiophenes by the iodoheterocyclisation of 1-mercapto-3-alkyn-2-ols in ionic liquids, Org. Biomol. Chem. 12 (2014), pp. 651–659.
  • J. Scholz, V. Hager, X. Wang, F.T.U. Kohler, M. Sternberg, M. Haumann, N. Szesni, K. Meyer, and P. Wasserscheid, Ethylene to 2-butene in a continuous gas phase reaction using SILP-type cationic nickel catalysts, ChemCatChem. 6 (2014), pp. 162–169.
  • E.E.L. Tanner, R.R. Hawker, H.M. Yau, A.K. Croft, and J.B. Harper, Probing the importance of ionic liquid structure: A general ionic liquid effect on an SNAr process, Org. Biomol. Chem. 11 (2013), pp. 7516–7521.
  • A. Forsyth, U. Frohlich, P. Goodrich, H.Q.N. Gunaratne, C. Hardacre, A. McKeown, and K.R. Seddon, Functionalised ionic liquids: Synthesis of ionic liquids with tethered basic groups and their use in Heck and Knoevenagel reactions, New J. Chem. 34 (2010), pp. 723–731.
  • C.S. Consorti, G.L.P. Aydos, and J. Dupont, Tandem isomerisation–metathesis catalytic processes of linear olefins in ionic liquid biphasic system, Chem. Commun. 46 (2010), pp. 9058–9060.
  • F. D'Anna, S. Marullo, P. Vitale, and R. Noto, Effect of the cation π-surface area on the 3D organization and catalytic ability of imidazolium-based ionic liquids, Eur. J. Org. Chem. 28 (2011), pp. 5681–5689.
  • Z. Liu, P. Hu, X. Meng, R. Zhang, H. Yue, C. Xu, and Y. Hu, Synthesis and properties of switchable polarity ionic liquids based on organic superbases and fluoroalcohols, Chem. Eng. Sci. 108 (2014), pp. 176–182.
  • S. Rodríguez-Sánchez, P. Galindo-Iranzo, A.C. Soria, M.L. Sanz, J.E. Quintanilla-López, and R. Lebrón-Aguilar, Characterization by the solvation parameter model of the retention properties of commercial ionic liquid columns for gas chromatography, J. Chromatogr. A 1326 (2014), pp. 96–102.
  • M.D. Joshi and J.L. Anderson, Recent advances of ionic liquids in separation science and mass spectrometry, RSC Adv. 2 (2012), pp. 5470–5484.
  • R.F.M. Frade and C.A.M. Afonso, Impact of ionic liquids in environment and humans: An overview, Hum. Exp. Toxicol. 29 (2010), pp. 1038–1054.
  • K.S. Egorova and V.P. Ananikov, Toxicity of ionic liquids: Eco(cyto)activity as complicated, but unavoidable parameter for task-specific optimization, ChemSusChem. 7 (2014), pp. 336–360.
  • A. Paternò, F. D’Anna, G. Musumarra, R. Noto, and S. Scirè, A multivariate insight into ionic liquids toxicities, RSC Adv. 4 (2014), pp. 23985–24000.
  • A. Lombardo, A. Roncaglioni, E. Benfenati, M. Nendza, H. Segner, S. Jeram, E. Pauné, and G. Shuurmann, Optimizing the aquatic toxicity assessment under REACH though an integrated testing strategy, Environ. Res. 135 (2014), pp. 156–164.
  • A.P. Toropova, A.A. Toropov, S.E. Martyanov, E. Benfenati, G. Gini, D. Leszczynska, and J. Leszczynska, CORAL: QSAR modeling of toxicity of organic chemicals towards Daphnia magna, Chemom. Intell. Lab. Syst. 110 (2012), pp. 177–181.
  • A.P. Toropova, A.A. Toropov, E. Benfenati, and G. Gini, QSAR models for toxicity of organic substances to Daphnia magna built up by using the CORAL freeware, Chem. Biol. Drug Des. 79 (2012), pp. 332–338.
  • UFT-Merck Ionic Liquids Biological Effects Database (2014); available at http://www.il-eco.uft.unibremen.de/?page=home&chent_id=&view=intro&lang=en.
  • K.R. Seddon, A. Stark, and M.J. Torres, Influence of chloride, water, and organic solvents on the physical properties of ionic liquids, Pure Appl. Chem. 72 (2000), pp. 2275–2287.
  • R.G. Diaza, S. Manganelli, A. Esposito, A. Roncaglioni, A. Manganaro, and E. Benfenati, Comparison of in silico tools for evaluating rat oral acute toxicity, SAR QSAR Environ. Res. 26 (2015), pp. 1–27.
  • A. Roncaglioni, A.A. Toropov, A.P. Toropova, and E. Benfenati, In silico methods to predict drug toxicity, Curr. Opin. Pharmacol. 13 (2013), pp. 802–806.
  • R.N. Das and K. Roy, Development of classification and regression models for Vibrio fischeri toxicity of ionic liquids: Green solvents for the future, Toxicol. Res. 1 (2012), pp. 186–195.
  • R.N. Das and K. Roy, Predictive in silico modeling of ionic liquids toward inhibition of the acetyl cholinesterase enzyme of electrophorus electricus: A predictive toxicology approach, Ind. Eng. Chem. Res. 53 (2014), pp. 1020–1032.
  • J.S. Torrecilla, J. Garcìa, E. Rojo, and F. Rodrìguez, Estimation of toxicity of ionic liquids in leukemia rat cell line and acetylcholinesterase enzyme by principal component analysis, neural networks and multiple lineal regressions, J. Hazard. Mater. 164 (2009), pp. 182–194.
  • G. Cruciani, P. Crivori, P.A. Carrupt, and B. Testa, Molecular fields in quantitative structure–permeation relationships: The VolSurf approach, J. Mol. Struct. Theochem. 503 (2000), pp. 17–30.
  • VolSurf+ manual available at http://www.moldiscovery.com/docs/vsplus/
  • GRID v. 20; software available at http://www.moldiscovery.com.
  • P.J. Goodford, A computational procedure for determining energetically favorable binding sites on biologically important macromolecules, J. Med. Chem. 28 (1985), pp. 849–857.
  • D.N.A. Boobbyer, P.J. Goodford, P.M. Mcwhinnie, and R.C. Wade, New hydrogen-bond potentials for use in determining energetically favorable binding sites on molecules of known structure, J. Med. Chem. 32 (1989), pp. 1083–1094.
  • R. Wade, K.J. Clerk, and P.J. Goodford, Further development of hydrogen bond functions for use in determining energetically favorable binding sites on molecules of known structure. 1. Ligand probe groups with the ability to form two hydrogen bonds, J. Med. Chem. 36 (1993), pp. 140–147.
  • V. Barresi, C. Bonaccorso, G. Consiglio, L. Goracci, N. Musso, G. Musumarra, C. Satriano, and C.G. Fortuna, Modeling, design and synthesis of new heteroaryl ethylenes active against the MCF-7 breast cancer cell-line, Mol. Biosys. 9 (2013), pp. 2426–2429.
  • C.G. Fortuna, V. Barresi, C. Bonaccorso, G. Consiglio, S. Failla, N. Musso, and G. Musumarra, Design, synthesis and in vitro antitumour activity of new heteroaryl ethylenes, Eur. J. Med. Chem. 47 (2012), pp. 221–227.
  • C.G. Fortuna, V. Barresi, and G. Musumarra, Design, synthesis and biological evaluation of trans 2-(thiophen-2-yl)vinyl heteroaromatic iodides, Bioorg. Med. Chem. 18 (2010), pp. 4516–4523.
  • C.G. Fortuna, V. Barresi, G. Berellini, and G. Musumarra, Design and synthesis of trans 2-(furan-2-yl)vinyl heteroaromatic iodides with antitumour activity, Bioorg. Med. Chem. 16 (2008), pp. 4150–4159.
  • G. Forte, C.G. Fortuna, L. Salerno, M.N. Modica, M.A. Siracusa, V. Cardile, G. Romeo, A. Bulbarelli, E. Lonati, and V. Pittala, Antitumor properties of substituted (αE)-α-(1H-indol-3-ylmethylene)benzeneacetic acids or amides, Bioorg. Med. Chem. 21 (2013), pp. 5233–5245.
  • M. Barone, A. Santagati, A.C.E. Graziano, C.G. Fortuna, G. Ronsisvalle, and V. Cardile, Synthesis and biological evaluation of sulfonilamidothienopyrimidinone derivatives as novel anti-inflammatory agents, Med. Chem. 7 (2014), pp. 700–710.
  • S.N. Riduan and Y. Zhang, Imidazolium salts and their polymeric materials for biological applications, Chem. Soc. Rev. 42 (2013), pp. 9055–9070.
  • L. Goracci, M. Ceccarelli, D. Bonelli, and G. Cruciani, Modeling phospholipidosis induction: Reliability and warnings, J. Chem. Inf. Model. 53 (2013), pp. 1436–1446.
  • L. Goracci, S. Buratta, L. Urbanelli, G. Ferrara, R. Di Guida, C. Emiliani, and S. Cross, Evaluating the risk of phospholipidosis using a new multidisciplinary pipeline approach, Eur. J. Med Chem. 92 (2015), pp. 49–63.
  • P. Crivori, G. Cruciani, P.A. Carrupt, and B. Testa, Predicting blood-brain barrier permeation from three-dimensional molecular structure, J. Med. Chem. 43 (2000), pp. 2204–2216.
  • G. Cruciani, M. Meniconi, E. Carosati, I. Zamora, and R. Mannhold, VOLSURF: A tool for drug adme-properties prediction, in Drug Bioavailability: Estimation of Solubility, Permeability, Absorption and Bioavailability, H. van de Waterbeemd, H. Lennernäs, and P. Artursson, eds., Wiley-VCH Verlag GmbH & KGaA, Weinheim, 2003, pp. 406–419.
  • G. Berellini, G. Cruciani, and R. Mannhold, Pharmacophore, drug metabolism, and pharmacokinetics models on non-peptide AT(1), AT(2), and AT(1)/AT(2) angiotensin II receptor antagonists, J. Med. Chem. 48 (2005), pp. 4389–4399.
  • C.R. Mannhold, G. Cruciani, H. Weber, H. Lemoine, A. Derix, C. Weichel, and M. Clementi, 6-substituted benzopyrans as potassium channel activators: Synthesis, vasodilator properties, and multivariate analysis, J. Med. Chem. 42 (1999), pp. 981–991.
  • C.G. Cruciani, M. Pastor, and W. Guba, VolSurf: A new tool for the pharmacokinetic optimization of lead compounds, Eur. J. Pharm. Sci. 11 (2000), pp. S29–S39.
  • G. Cruciani, F. Milletti, L. Storchi, G. Sforna, and L. Goracci, In silico pK(a) prediction and ADME profiling, Chem & Biodivers 6 (2009), pp. 1812–1821.
  • F. Milletti, L. Storchi, L. Goracci, S. Bendels, B. Wagner, M. Kansy, and G. Cruciani, Extending pK(a) prediction accuracy: High-throughput pK(a) measurements to understand pK(a) modulation of new chemical series, Eur. J. Med. Chem. 45 (2010), pp. 4270–4279.
  • S. Wold and M. Sjöström, SIMCA: A method for analyzing chemical data in terms of similarity and analogy, in Chemometrics: Theory and Application, B.R. Kowalski, eds., ACS Symposium Series, Washington, 1977, pp. 243–282.
  • S. Wold, M. Sjöström, and L. Eriksson, Partial Least Squares Projections to latent structures (PLS) in chemistry, in The Encyclopedia of Computational Chemistry, Schleyer P.v.R., eds., John Wiley & Sons, Chichester, 1998, pp. 2006–2020.
  • M. Arshadi and P. Kebarle, Hydration of OH– and O2– in the gas phase. Comparative solvatation of OH– by water and the hydrogen halides effects of acidity, J. Phys. Chem. 74 (1970), pp. 1483–1485.
  • SYBYL-X 1.3; software available at: http://www.tripos.com.
  • R. Mannhold, G. Berellini, E. Carosati, and P. Benedetti, Use of MIF-based VolSurf descriptors in physicochemical and pharmacokinetic studies, in Molecular Interaction Fields, G. Cruciani, R. Mannhold, H. Kubinyi, and G. Folkers, eds., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006, pp. 171–196.
  • S. Stolte, J. Arning, U. Bottin-Weber, A. Muller, W.-R. Pitner, U. Welz-Biermann, B. Jastorff, and J. Ranke, Effects of different head groups and functionalised side chains on the cytotoxicity of ionic liquids, Green Chem. 9 (2007), pp. 760–767.
  • S. Bruzzone, C. Chiappe, S.E. Focardi, C. Pretti, and M. Renzi, Theoretical descriptor for the correlation of aquatic toxicity of ionic liquids by quantitative structure–toxicity relationships, Chem. Eng. J. 175 (2011), pp. 17–23.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.