625
Views
39
CrossRef citations to date
0
Altmetric
Articles

Investigation of the influence of protein corona composition on gold nanoparticle bioactivity using machine learning approaches

, , &
Pages 521-538 | Received 16 Apr 2016, Accepted 31 May 2016, Published online: 22 Jun 2016

References

  • G. Chen, M.G. Vijver, and W.J.G.M. Peijnenburg, Summary and analysis of the currently existing literature data on metal-based nanoparticles published for selected aquatic organisms: Applicability for toxicity prediction by (Q)SARs, ATLA 43 (2015), pp. 221–240.
  • R. Tantra, C. Oksel, T. Puzyn, J. Wang, K.N. Robinson, X.Z. Wang, C.J. Ma, and T. Wilkins, Nano(Q)SAR: Challenges, pitfalls and perspectives, Nanotoxicology 5390 (2014), pp. 1–7.
  • C. Oksel, C.Y. Ma, and X.Z. Wang, Current situation on the availability of nanostructure biological activity data, SAR QSAR Environ. Res. 26 (2015), pp. 79–94.
  • C. Oksel, C.Y. Ma, J.J. Liu, T. Wilkins, and X.Z. Wang, (Q)SAR modelling of nanomaterial toxicity: A critical review, Particuology 21 (2015), pp. 1–19.
  • D. Winkler, E. Mombelli, A. Pietroiusti, L. Tran, A. Worth, B. Fadeel, and M.J. McCall, Applying quantitative structure-activity relationship approaches to nanotoxicology: Current status and future potential, Toxicology 313 (2013), pp. 15–23.
  • Q. Mu, G. Jiang, L. Chen, H. Zhou, D. Fourches, A. Tropsha, and B. Yan, Chemical basis of interactions between engineered nanoparticles and biological systems, Chem. Rev. 114 (2014), pp. 7740–7781.
  • L. Breiman, Statistical modeling: The two cultures, Stat. Sci. 16 (2011), pp. 199–215.
  • J.P. Doucet and A. Panaye, Three-dimensional QSAR. Applications in Pharmacology and Toxicology. CRC Press, BocaRaton, FL, 2010.
  • A. Panaye, B.T. Fan, J.P. Doucet, X.J. Yao, R.S. Zhang, M.C. Liu, and Z.D. Hu, Quantitative structure-toxicity relationships (QSTRs): A comparative study of various non linear methods. General regression neural network, radial basis function neural network and support vector machine in predicting toxicity of nitro- and cyano-aromatics to Tetrahymena pyriformis, SAR QSAR Environ. Res. 17 (2006), pp. 75–91.
  • Y. Low, T. Uehara, Y. Minowa, H. Yamada, Y. Ohno, T. Urushidani, A. Sedykh, E. Muratov, D. Fourches, H. Zhu, I. Rusyn, and A. Tropsha, Predicting drug-induced hepatotoxicity using QSAR and toxicogenomics approaches, Chem Res Toxicol. 24 (2011), pp. 1251–1262.
  • P. Liu and W. Long, Current mathematical methods used in QSAR/QSPR studies, Int. J. Mol. Sci. 10 (2009), pp. 1978–1998.
  • C.Y. Liew and C.W. Yap, Current modeling methods used in QSAR/QSPR, in Statistical Modeling of Molecular Descriptors used in QSAR/QSPR, M. Dehmer, K. Varmuza, and D. Bonchev, eds., Wiley-VCH Verlag GmbH, Weinheim, Germany, 2012, pp. 1–30.
  • D. De la Iglesia, M. Garcıa-Remesal, A. Anguita, M. Munoz-Marmol, C. Kulikowski, and V. Maojo, A machine learning approach to identify clinical trials involving nanodrugs and nanodevices from clinical trials. PLoS One 9 (2014), Available at http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0110331.
  • D. Fourches, D. Pu, C. Tassa, R. Weissleder, S.Y. Shaw, R.J. Mumper, and A. Tropsha, Quantitative nanostructure – Activity relationship modeling, ACS Nano. 4 (2010), pp. 5703–5712.
  • E. Papa, J.P. Doucet, and A. Doucet-Panaye, Linear and non linear modelling of the cytotoxicity of TiO2 and ZnO nanoparticles by empirical descriptors, SAR QSAR Envir. Res. 26 (2015), pp. 647–665.
  • C.D. Walkey, J.B. Olsen, F. Song, R. Liu, H. Guo, D.W. Olsen, Y. Cohen, A. Emili, and W.C. Chan, Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles, ACS Nano 8 (2014), pp. 2439–2455.
  • R. Liu, W. Jiang, C. Walkey, W. Chan, and D.P.Y. Cohen, Prediction of nanoparticles-cell association based on corona proteins and physicochemical properties, Nanoscale 7 (2015), pp. 9664–9675.
  • P. Kamath, A. Fernandez, F. Giralt, and R. Rallo, Predicting cell association of surface-modified nanoparticles using protein corona structure–activity relationships (PCSAR), Curr. Top. Med. Chem. 15 (2015), pp. 1930–1937.
  • M. Rahman, S. Laurent, N. Tawil, L. Yahia, and M. Mahmoudi, Protein-Nanoparticle Interactions, Springer Series in Biophysics, Vol. 15, Springer, Berlin, Heidelberg, 2013.
  • C. Johnston, D. Brown, A. Kermanizadeh, E. Gubbins, and V. Stone, Investigating the relationship between nanomaterial hazard and physicochemical properties: Informing the exploitation of nanomaterials within therapeutic and diagnostic applications, J. Control. Release 164 (2012), pp. 307–313.
  • S. Zanganeh, R. Spitler, M. Erfanzadeh, and M. Mahmoudi, Protein corona: Opportunities and challenges, Int. J. Biochem. Cell Biol. 75 (2016), pp. 1–5.
  • P. Gramatica, Principles of QSAR models validation: Internal and external, QSAR Comb. Sci. 26 (2007), pp. 694–701.
  • Organisation for Economic Co-operation and Development, Guidance Document on the Validation of (Quantitative) Structure-Activity Relationships [(Q)SAR] Models, ENV/JM/MONO(2007)2, pp. 1–154. 2007. Available at: http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?doclanguage=en&cote=env/jm/mono(2007)2.
  • R.L. Haupt and S.E. Haupt, Practical Genetic Algorithms, 2nd ed., Wiley-Interscience, Hoboken, NJ, 2004.
  • P. Gramatica, N. Chirico, E. Papa, S. Cassani, and S. Kovarich, QSARINS: A new software for the development, analysis, and validation of QSAR MLR models, J. Comput. Chem. 34 (2013), pp. 2121–2132.
  • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, Gene selection for cancer classification using support vector machine, Mach. Learn. 46 (2002), pp. 389–422.
  • M. Kuhn, Building predictive models in R using the caret package, J. Stat. Soft. 28 (2008), pp. 1–26.
  • R.D.C. Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2014. Available at: http://www.R-project.org.
  • R. Todeschini, A. Maiocchi, and V. Consonni, The K correlation index: Theory development and its application in chemometrics, Chemom. Intell. Lab. 46 (1999), pp. 13–29.
  • S. Wold, M. Sjöström, and L. Eriksson, PLS-regression: A basic tool of chemometrics, Chemom. Intell. Lab. Syst. 58 (2001), pp. 109–130.
  • J.H. Friedman and W. Stuetzle, Projection pursuit regression, J. Am. Stats Assoc. 76 (1981), pp. 817–823.
  • V.N. Vapnik, The Nature of Statistical Learning Theory, Springer, New York, NY, 1995.
  • C. Cortes and V. Vapnik, Support vector networks, Mach. Learn. 20 (1995), pp. 273–297.
  • J.H. Friedman, Multivariate adaptive regression splines, Ann. Statist. 19 (1991), pp. 1–67.
  • R. Hu, J.P. Doucet, M. Delamar, and R. Zhang, QSAR models for 2-amino-6-arylsulfonylbenzonitriles and congeners HIV-1 reverse transcriptase inhibitors based on linear and nonlinear regression methods, Eur. J. Med. Chem. 44 (2009), pp. 2158–2171.
  • W. Zheng and A. Tropsha, Novel variable selection quantitative structure-property relationship approach based on the k-nearest neighbor principle, J. Chem. Inf. Comput. Sci. 40 (2000), pp. 186–194.
  • P. Itskowitz and A. Tropsha, k-Nearest-Neighbors QSAR modeling as a variational problem: Theory and applications, J. Chem. Inf. Model. 45 (2005), pp. 777–785.
  • B. Walczak and D.L. Massart, Local modelling with radial basis function networks, Chemom. Intell. Lab. 50 (2000), pp. 179–198.
  • M.J.L. Orr, Introduction to Radial Basis Function Networks, Centre for Cognitive Science, Edinburgh University, Edinburgh, UK, 1996.
  • D.F. Specht, A general regression neural network, IEEE Trans. Neural Netw. 2 (1991), pp. 568–576.
  • J. Zupan and J. Gasteiger, Neural Networks in Chemistry and Drug Design, 2nd ed., Wiley, New York, NY, 1999.
  • L. Breiman, Random forests, Mach. Learn. 45 (2001), pp. 5–32.
  • M.J.L. Orr, MATLAB Routines for Subset Selection and Ridge Regression in Linear Neural Networks, Centre for Cognitive Science, Edinburgh University, Edinburgh, UK, 1996.
  • P.K. Ojha, I. Mitra, R.N. Das, and K. Roy, Further exploring rm2 metrics for validation of QSPR models, Chemom. Intell. Lab. Sys. 107 (2011), pp. 194–205.
  • U. Thissen, M. Pepers, B. Ustin, W.J. Melssen, and L.M.C. Buydens, Comparing support vector machine to PLS for spectral regression applications, Chemom. Intell. Lab. Syst. 73 (2004), pp. 169–179.
  • J.P. Doucet, F. Barbault, H. Xia, A. Panaye, and B.T. Fan, Nonlinear SVM approaches to QSPR/QSAR studies and drug design, Curr. Comput.-Aided Drug Des. 3 (2007), pp. 263–289.
  • I.V. Tetko, V.P. Solovev, A.V. Antonov, X. Yao, J.P. Doucet, B. Fan, F. Hoonakker, D. Fourches, P. Jost, N. Lachiche, and A. Varnek, Benchmarking of linear and nonlinear approaches for quantitative structure−property relationship studies of metal complexation with ionophores, J. Chem. Inf. Model 46 (2006), pp. 808–819.
  • K. Tanabe, T. Kurita, K. Nishida, B. Lučić, D. Amić, and T. Suzuki, Improvement of carcinogenicity prediction performances based on sensitivity analysis in variable selection of SVM models, SAR QSAR Environ. Res. 24 (2013), pp. 565–580.
  • V. Cherkassky and Y. Ma, Practical selection of SVM parameters and noise estimation for SVM regression, Neural Netw. 17 (2004), pp. 113–126.
  • B. Caputo, K. Sim, F. Furesjo, and A. Smola, Appearance-based object recognition using SVMs: Which kernel should I use? in Proceedings of NIPS Workshop on Statistical Methods for Computational Experiments in Visual Processing and Computer Vision, Whistler, 2002.
  • A. Karatzoglou, A. Smola, K. Hornik, and A. Zeileis, Kernlab, an S4 package for kernel methods in R, J. Stat. Soft. 11 (2004), pp. 1–20. Available at http://www.jstatsoft.org/v11/i09.
  • M. Shen, A. Le Tiran, Y. Xiao, A. Golbraikh, H. Kohn, and A. Tropsha, Quantitative structure activity relationship analysis of functionalized amino acid anticonvulsant agents using k nearest neighbours and simulated annealing PLS method, J. Med. Chem. 45 (2002), pp. 2811–2823.
  • H. Zhu, A. Tropsha, D. Fourches, A. Varnek, E. Papa, P. Gramatica, T. Oberg, P. Dao, A. Cherkasov, and I.V. Tetko, Combinatorial QSAR modeling of chemical toxicants against Tetrahymena pyriformis, J. Chem. Inf. Model. 48 (2008), pp. 766–784.
  • A.H. Asikainen, J. Ruuskanen, and K.A. Tuppurainen, Performance of (consensus) kNNQSAR for predicting estrogenic activity in a large diverse set of organic compounds, SAR QSAR Environ. Res. 15 (2004), pp. 19–32.
  • S. Kovarich, E. Papa, J. Li, and P. Gramatica, QSAR classification models for the screening of the endocrine-disrupting activity of perfluorinated compounds, SAR QSAR Environ. Res. 23 (2012), pp. 207–220.
  • S. Ajmani, K. Jadhav, and S.A. Kulkarni, Three-dimensional QSAR using the k-Nearest neighbor method and its interpretation, J. Chem. Inf. Model. 46 (2006), pp. 24–31.
  • E. Papa and P. Gramatica, Screening of persistent organic pollutants by QSPR classification models: A comparative study, J. Mol. Graph. Model. 27 (2008), pp. 59–65.
  • X.J. Yao, A. Panaye, J.P. Doucet, R.S. Zhang, H.F. Chen, M.C. Liu, Z.D. Hu, and B.T. Fan, Comparative study of QSAR/QSPR correlations using support vector machines, radial basis function neural networks, and multiple linear regression, J. Chem. Inf. Comput. Sci. 44 (2004), pp. 1257–1266.
  • T. Niwa, Using general regression and probabilistic neural networks to predict human intestinal absorption with topological descriptors derived from two-dimensional chemical structures, J. Chem. Inf. Comput. Sci. 43 (2003), pp. 113–119.
  • J.P. Doucet and A. Doucet-Panaye, Structure activity relationship study of trifluotomethylketone inhibitors of insect juvenile hormone esterase, Comparison of several classification methods, SAR QSAR Environ Res. 25 (2014), pp. 589–616.
  • E. Parzen, On estimation of a probability density function and mode, Ann. Math. Stat. 3 (1962), pp. 1065–1076.
  • A.L. Teixeira, J.P. Leal, and A.O. Falcao, Random Forests for feature selection in QSPR Models. An application for predicting standard enthalpy of formation of hydrocarbons J. Cheminf. 5 (2013), pp. 1–15.
  • Minitab 17 Statistical Software, Minitab, Inc. State College, PA, 2016; software available at: www.minitab.com.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.