272
Views
12
CrossRef citations to date
0
Altmetric
Articles

Room-temperature and temperature-dependent QSRR modelling for predicting the nitrate radical reaction rate constants of organic chemicals using ensemble learning methods

, , &
Pages 539-558 | Received 11 Apr 2016, Accepted 06 Jun 2016, Published online: 07 Jul 2016

References

  • R. Atkinson and W.P.L. Carter, Kinetics and mechanisms of the gas phase reactions of ozone with organic compounds under atmospheric conditions, Chem. Rev. 84 (1984), pp. 437–470.
  • R. Atkinson, Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds under atmospheric conditions, Chem. Rev. 86 (1986), pp. 69–201.
  • R. Atkinson, Atmospheric oxidation, in Handbook of Property Estimation Methods for Chemicals, R.S. Boethling and D. Mackay, eds., Lewis Publishing, Boca Raton, FL, 2000, pp. 335–354.
  • R. Atkinson, Kinetics and mechanisms of the gas phase reactions of the NO3 radical with organic compounds, J. Phys. Chem. Ref. Data 20 (1991), pp. 459–507.
  • R. Atkinson, Atmospheric chemistry of VOCs and Nox, Atmos. Environ. 34 (2000), pp. 2063–2101.
  • R. Atkinson and J. Arey, Atmospheric degradation of volatile organic compounds, Chem. Rev. 103 (2003), pp. 4605–4638.
  • X. Wang, C. Yin, and L. Wang, Structure–activity relationships and response–surface analysis of nitroaromatics toxicity to the yeast (Saccharomyces cerevisiae), Chemosphere 46 (2002), pp. 1045–1051.
  • T. Watanabe, M. Takashima, T. Kasai, and T. Hirayama, Comparison of the mutational specificity induced by environmental genotoxic nitrated polycyclic aromatic hydrocarbons in Salmonella typhimurium his genes, Mutat. Res. 394 (1997), pp. 103–112.
  • M. Vrekoussis, M. Kanakidou, N. Mihalopoulos, P.J. Crutzen, J. Lelieveld, D. Perner, H. Berresheim, and E. Baboukas, Role of the NO3 radicals in oxidation processes in the eastern Mediterranean troposphere during the MINOS campaign, Atmos. Chem. Phys. 4 (2004), pp. 169–182.
  • T. Öberg, A QSAR for the hydroxyl radical reaction rate constant: Validation, domain of application, and prediction, Atmos. Environ. 39 (2005), pp. 2189–2200.
  • OECD, Guidance on the Principle of Measure of Goodness of Fit, Robustness and Predictivity, Guideline no. ENV/JM/MONO(2007)2, Chapter 5, OECD, Paris, 2007, pp 42−65.
  • A. Sabljic and H. Gusten, Predicting the night time NO3 radical reactivity in the troposphere, Atmos. Environ. 24A (1990), pp. 73–78.
  • M. Muller and W. Klein, Estimating atmospheric degradation processes by SARs, Sci. Total Environ. 109 (1991), pp. 261–273.
  • H. Gusten, Z. Medven, S. Sekušak, and A. Sabljiĉ, Predicting tropospheric degradation of chemicals: From estimation to computation, SAR QSAR Environ. Res. 4 (1995), pp. 197–209.
  • P. Gramatica, V. Consonni, and R. Todeschini, QSAR study on the tropospheric degradation of organic compounds, Chemosphere 38 (1999), pp. 1371–1378.
  • P. Gramatica and P. Pilutti, and Papa E, Predicting the NO3 radical tropospheric degradability of organic pollutants by theoretical molecular descriptors, Atmos. Environ. 37 (2003), pp. 3115–3124.
  • P. Gramatica, P. Pilutti, and E. Papa, A tool for the assessment of VOC degradability by tropospheric oxidants starting from chemical structure, Atmos. Environ. 38 (2004), pp. 6167–6175.
  • X.X. Long and J.F. Niu, Estimation of gas-phase reaction rate constants of alkylnaphthalenes with chlorine, hydroxyl and nitrate radicals, Chemosphere 67 (2007), pp. 2028–2034.
  • E. Papa and P. Gramatica, Externally validated QSPR modelling of VOC tropospheric oxidation by NO3 radicals, SAR QSAR Environ. Res. 19 (2008), pp. 655–668.
  • X. Yu, J. Deng, and B. Yi, Prediction of rate constants for nitrate radical reactions using a svm model based on density functional theory, Environ. Eng. Manag. J. 13 (2014), pp. 315–322.
  • C. Li, X. Yang, X. Li, J. Chen, and X. Qiao, Development of a model for predicting hydroxyl radical reaction rate constants of organic chemicals at different temperatures, Chemosphere 95 (2014), pp. 613–618.
  • D. Zhu and J. Pignalello, A concentration-dependent multi-term linear free energy relationship for sorption of organic compounds to soils based on the hexadecane dilute-solution reference state, Environ. Sci. Technol. 39 (2005), pp. 8817–8828.
  • Q. Zhao, K. Yang, W. Li, and B. Xing, Concentration-dependent polyparameter linear free energy relationships to predict organic compound sorption on carbon nanotubes, Sci. Rep. 4 (2014), pp. 3888–3894.
  • A. Kondora, G. Jarvasa, J. Kontosa, and A. Dallosa, Temperature dependent surface tension estimation using COSMO-RS sigma, Chem. Eng. Res. Des. 92 (2014), pp. 2867–2872.
  • X. Li, W. Zhao, J. Li, J. Jiang, J. Chen, and J. Chen, Development of a model for predicting reaction rate constants of organic chemicals with ozone at different temperatures, Chemosphere 92 (2013), pp. 1029–1034.
  • S. Gupta, N. Basant, D. Mohan, and K.P. Singh, Modelling the reactivities of hydroxyl radical and ozone towards atmospheric organic chemicals using quantitative structure-reactivity relationship approaches, Environ. Sci. Pollut. Res. (2016)doi:10.1007/s11356-016-6527-2.
  • M.H. Fatemi, Prediction of ozone tropospheric degradation rate constant of organic compounds by using artificial neural networks, Anal. Chim. Acta 556 (2006), pp. 355–363.
  • X. Yu, B. Yi, X. Wang, and J. Chen, Predicting reaction rate constants of ozone with organic compounds from radical structures, Atmos. Environ. 51 (2012), pp. 124–130.
  • K.P. Singh, S. Gupta, and P. Rai, Predicting acute aquatic toxicity of structurally diverse chemicals in fish using artificial intelligence approaches, Ecotox. Environ. Safety 95 (2013), pp. 221–233.
  • K.P. Singh, S. Gupta, A. Kumar, and D. Mohan, Multispecies QSAR modelling for predicting the aquatic toxicity of diverse organic chemicals for regulatory toxicology, Chem. Res. Toxicol. 27 (2014), pp. 741–753.
  • K.P. Singh, S. Gupta, and N. Basant, In silico prediction of cellular permeability of diverse chemicals using qualitative and quantitative SAR modeling approaches, Chemom. Intell. Lab. Syst. 140 (2015), pp. 61–72.
  • S. Gupta, N. Basant, and K.P. Singh, Estimating sensory irritation potency of volatile organic chemicals using QSARs based on decision tree methods for regulatory purpose, Ecotoxicology 24 (2015), pp. 873–886.
  • S. Gupta, N. Basant, and K.P. Singh, Qualitative and quantitative structure–activity relationship modelling for predicting blood–brain barrier permeability of structurally diverse chemicals, SAR QSAR Environ. Res. 26 (2015), pp. 95–124.
  • N. Basant, S. Gupta, and K.P. Singh, Predicting acetyl cholinesterase enzyme inhibition potential of ionic liquids using machine learning approaches: An aid to green chemicals designing, J. Mol. Liq. 209 (2015), pp. 404–412.
  • N. Basant, S. Gupta, and K.P. Singh, Modeling the toxicity of chemical pesticides in multiple test species using local and global QSTR approaches, Toxicol. Res. 5 (2016), pp. 340–353.
  • H. Li, Y. Liang, and Q. Xu, Support vector machines and its applications in chemistry, Chemometr. Intell. Lab. Syst. 95 (2009), pp. 188–198.
  • K.P. Singh, N. Basant, and S. Gupta, Support vector machines in water quality management, Anal. Chim. Acta 703 (2011), pp. 152–162.
  • K.P. Singh, S. Gupta, and D. Mohan, Evaluating influences of seasonal variations and anthropogenic activities on alluvial groundwater hydrochemistry using ensemble learning approaches, J. Hydrol. 511 (2014), pp. 254–266.
  • L. Breiman, Bagging predictors, Mach. Learn. 24 (1996), pp. 123–140.
  • J.H. Friedman, Stochastic gradient boosting, Comput. Stat. Data Anal. 38 (2002), pp. 367–378.
  • J. Mahjoobi and A. Etemad-Shahidi, An alternative approach for the prediction of significant wave heights based on classification and regression trees, Appl. Ocean Res. 30 (2008), pp. 172–177.
  • C.W. Yap, PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints, J. Comput. Chem. 32 (2011), pp. 1466–1474.
  • ChemSpider, Royal Society of Chemistry, London, UK; software available at www.chemspider.com.
  • Pubchem, National Center for Biomedical Information, Betheseda, MD; software available at http://pubchem.ncbi.nlm.nih.gov/compound.
  • Z. Reitermanov, Data splitting, WDS’10 Proceedings of Contributed Papers, Part I: Mathematics and Computer Sciences, J. Safrankova and J. Pavlu, eds., Matfyzpress Prague, (2010), pp. 31–36.
  • K.P. Singh, A. Malik, V.K. Singh, D. Mohan, and S. Sinha, Chemometric analysis of groundwater quality data of alluvial aquifer of Gangetic plain, North India, Anal. Chim. Acta 550 (2005), pp. 82–91.
  • G. Patlewicz, N. Jeliazkova, and A. Gallegos, Saliner, and A.P. Worth, Toxmatch – A new software tool to aid in the development and evaluation of chemically similar groups, SAR QSAR Environ. Res. 19 (2008), pp. 397–412.
  • J. Burez and D. Van den Poel, Handling class imbalance in customer churn prediction, Expert Syst. Appl. 36 (2009), pp. 4626–4636.
  • A. Tropsha, P. Gramatica, and V.K. Gombar, The importance of being earnest: Validation is the absolute essential for successful application and interpretation of QSPR models, QSAR Comb. Sci. 22 (2003), pp. 69–77.
  • P. Gramatica, Principles of QSAR models validation: Internal and external, QSAR Comb. Sci. 26 (2007), pp. 694–701.
  • C. Rücker, G. Rücker, and M. Meringer, Y-Randomization and its variants in QSPR/QSAR, J. Chem. Inf. Comput. Sci. 47 (2007), pp. 2345–2357.
  • I. Mitra, A. Saha, and K. Roy, Exploring quantitative structure–activity relationship studies of antioxidant phenolic compounds obtained from traditional Chinese medicinal plants, Mol. Simul. 36 (2010), pp. 1067–1079.
  • D.L. Alexander, A. Tropsha, and D.A. Winkler, Beware of R2: simple, unambiguous assessment of the prediction accuracy of QSAR and QSPR models, J. Chem. Inf. Model. 55 (2015), pp. 1316–1322.
  • K. Roy, R.N. Das, P. Ambure, and R.B. Aher, Be aware of error measures. Further studies on validation of predictive QSAR models, Chemometr. Intell. Lab. Syst. 152 (2016), pp. 18–33.
  • T. Chai and R.R. Draxler, Root mean square error (RMSE) or mean absolute error (MAE)? Arguments against avoiding RMSE in the literature, Geosci. Model. Dev. 7 (2014), pp. 1247–1250.
  • J.A. Arnot and F.A.P.C. Gobas, A food web bioaccumulation model for organic chemicals in aquatic ecosystems, Environ. Toxicol. Chem. 23 (2004), pp. 2343–2355.
  • J.M. Armitage, J.A. Arnot, F. Wania, and D. Mackay, Development and evaluation of a mechanistic bioconcentration model for ionogenic organic chemicals in fish, Environ. Toxicol. Chem. 32 (2013), pp. 115–128.
  • D. Gadaleta, G.F. Mangiatordi, M. Catto, A. Carotti, and G. Nicolotti, Where theory meets reality, Int. J. Quant. Struct.-Prop. Relat. 1 (2016), pp. 45–63.
  • K. Roy, S. Kar, and P. Ambure, On a simple approach for determining applicability domain of QSAR models, Chemom. Intell. Lab. Syst. 145 (2015), pp. 22–29.
  • T. Puzyn, B. Rasulev, A. Gajewicz, X. Hu, T.P. Dasari, A. Michalkova, H.M. Hwang, A. Toropov, D. Leszczynska, and J. Leszczynski, Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles, Nat. Nanotechnol. 6 (2011), pp. 175–178.
  • L.H. Hall and L.B. Kier, Electrotopological state indices for atom types: A novel combination of electronic, topological, and valence state information, J. Chem. Inf. Comp. Sci. 35 (1995), pp. 1039–1045.
  • L.H. Hall, L.B. Kier, and B.B. Brown, Molecular similarity based on novel atom-type electrotopological state indices, J. Chem. Inf. Comp. Sci. 35 (1995), pp. 1039–1045.
  • R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH Verlag GmbH, Weinheim, 2000.
  • N.H.A. Samat, A.M. Abdualkader, F. Mohamed, and A.D. Abdullahie, Group-based quantitative structural activity relationship analysis of bcell lymphoma extralarge (BCL-XL) inhibitors, Int. J. Pharm. Pharm. Sci. 6 (2014), pp. 284–290.
  • A. Tropsha, A. Golbraikh, and W.J. Cho, Development of kNN QSAR models for 3-arylisoquinoline antitumor agents, Bull. Korean Chem. Soc. 32 (2011), pp. 2397–2404.
  • K. Roy and R.N. Das, The ETA indices in QSAR/QSPR/QSTR research, in Quantitative Structure-Activity Relationships in Drug Design, Predictive Toxicology and Risk assessment, K. Roy, ed., PA, IGI Global, Hershey, 2015, pp. 48–83.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.