199
Views
3
CrossRef citations to date
0
Altmetric
Articles

Identification of new dual spleen tyrosine kinase (Syk) and phosphoionositide-3-kinase δ (PI3Kδ) inhibitors using ligand and structure-based integrated ideal pharmacophore models

&
Pages 469-499 | Received 31 Mar 2016, Accepted 01 Jul 2016, Published online: 19 Jul 2016

References

  • J.L. Browning, B cells move to centre stage: Novel opportunities for autoimmune disease treatment, Nat. Rev. Drug Discov. 5 (2006), pp. 564–576.
  • K.D. Puri, J.A. Di Paolo, and M.R. Gold, B-cell receptor signaling inhibitors for treatment of autoimmune inflammatory diseases and B-cell malignancies, Int. Rev. Immunol. 32 (2013), pp. 397–427.
  • N.A. Mitchison and L.R. Wedderburn, B cells in autoimmunity, PNAS 97 (2000), pp. 8750–8751.
  • N. Fowler and E. Davis, Targeting B-cell receptor signaling: Changing the paradigm, ASH Education Program Book 1 (2013), pp. 553–560.
  • V. Seda and M. Marek, B-cell receptor signalling and its crosstalk with other pathways in normal and malignant cells, Eur. J. Haematol. 94 (2015), pp. 193–205.
  • R.J. Cornall, A.M. Cheng, T. Pawson, and C.C. Goodnow, Role of Syk in B-cell development and antigen-receptor signaling, PNAS 97 (2000), pp. 1713–1718.
  • M. Werner, E. Hobeika, and H. Jumaa, Role of PI3K in the generation and survival of B cells, Immunol. Rev. 37 (2010), pp. 55–71.
  • M.E. Weinblatt, M.C. Genovese, M. Ho, S. Hollis, K. Rosiak-Jedrychowicz, A. Kavanaugh, D.S. Millson, G. Leon, M. Wang, and D. van der Heijde, Effects of fostamatinib, an oral spleen tyrosine kinase inhibitor, in rheumatoid arthritis patients with an inadequate response to methotrexate: Results from a phase III, multicenter, randomized, double-blind, placebo-controlled, parallel-group study, Arthritis Rheumatol. 66 (2014), pp. 3255–3264.
  • https://www.clinicaltrials.gov/ct2/show/NCT02004522?term=NCT02004522&rank=1.
  • P. Csermely, V. Agoston, and S. Pongor, The efficiency of multi-target drugs: The network approach might help drug design, Trends Pharmacol. Sci. 26 (2005), pp. 178–182.
  • S. Frantz, Drug discovery: Playing dirty, Nature 437 (2005), pp. 942–943.
  • H. Kitano, A robustness-based approach to systems-oriented drug design, Nat. Rev. Drug Discov. 5 (2007), pp. 202–210.
  • G.R. Zimmermann, J. Lehar, and C.T. Keith, Multi-target therapeutics: When the whole is greater than the sum of the parts, Drug Discov. Today 12 (2007), pp. 34–42.
  • C.L. Cywin, B.P. Zhao, D.W. McNeil, M. Hrapchak, A.S. Prokopowicz, D.R. Goldberg, T.M. Morwick, A. Gao, S. Jakes, M. Kashem, R.L. Magolda, R.M. Soll, M.R. Player, M.A. Bobko, J. Rinker, R.L. DesJarlais, and M.P. Winters, Discovery and SAR of novel [1, 6] naphthyridines as potent inhibitors of spleen tyrosine kinase (SYK), Bioorg. Med. Chem. Lett. 13 (2002), pp. 1415–1418.
  • A. Hirabayashi, H. Mukaiyama, H. Kobayashi, H. Shiohara, S. Nakayama, M. Ozawa, E. Tsuji, K. Miyazawa, K. Misawa, H. Ohnota, and M. Isaji, Structure-activity relationship studies of imidazo[1,2-c]pyrimidine derivatives as potent and orally effective Syk family kinases inhibitors, Bioorg. Med. Chem. Lett. 16(20) (2008), pp. 9247–9260.
  • H. Hisamichi, R. Naito, A. Toyoshima, N. Kawano, A. Ichikawa, A. Orita, M. Orita, N. Hamada, M. Takeuchi, M. Ohta, and S. Tsukamoto, Synthetic studies on novel Syk inhibitors. Part 1: Synthesis and structure-activity relationships of pyrimidine-5-carboxamide derivatives, Bioorg. Med. Chem. Lett. 13 (2005), pp. 4936–4951.
  • A. Hirabayashi, H. Mukaiyama, H. Kobayashi, H. Shiohara, S. Nakayama, M. Ozawa, K. Miyazawa, K. Misawa, H. Ohnota, and M. Isaji, A novel Syk family kinase inhibitor: Design, synthesis, and structure-activity relationship of 1,2,4-triazolo[4,3-c]pyrimidine and 1,2,4-triazolo[1,5-c]pyrimidine derivatives, Bioorg. Med. Chem. Lett. 16 (2008), pp. 7347–7357.
  • J.Y. Lai, P.J. Cox, R. Patel, S. Sadiq, D.J. Aldous, S. Thurairatnam, K. Smith, D. Wheeler, S. Jagpal, S. Parveen, G. Fenton, T.K. Harrison, C. McCarthy, and P.J. Bamborough, Potent small molecule inhibitors of spleen tyrosine kinase (Syk), Bioorg. Med. Chem. Lett. 13 (2003), pp. 3111–3114.
  • M. Castillo, P. Forns, M. Erra, M. Mir, M. López, M. Maldonado, A. Orellana, C. Carreño, I. Ramis, M. Miralpeix, and B. Vidal, Highly potent aminopyridines as Syk kinase inhibitors, Bioorg. Med. Chem. Lett. 22 (2012), pp. 5419–5423.
  • P. Forns, C. Esteve, L. Taboada, J.A. Alonso, A. Orellana, M. Maldonado, C. Carreño, I. Ramis, M. López, M. Miralpeix, and B. Vidal, Pyrazine-based Syk kinase inhibitors, Bioorg. Med. Chem. Lett. 22 (2012), pp. 2784–2788.
  • J. Liddle, F.L. Atkinson, M.D. Barker, P.S. Carter, N.R. Curtis, R.P. Davis, C. Douault, M.C. Dickson, D. Elwes, N.S. Garton, M. Gray, T.G. Hayhow, C.I. Hobbs, E. Jones, S. Leach, K. Leavens, H.D. Lewis, S. McCleary, M. Neu, V.K. Patel, A.G. Preston, C. Ramirez-Molina, T.J. Shipley, P.A. Skone, N. Smithers, D.O. Somers, A.L. Walker, R.J. Watson, and G.G. Weingarten, Discovery of GSK143, a highly potent, selective and orally efficacious spleen tyrosine kinase inhibitor, Bioorg. Med. Chem. Lett. 21 (2011), pp. 6188–6194.
  • R. Alexander, A. Balasundaram, M. Batchelor, D. Brookings, K. Crépy, T. Crabbe, M.F. Deltent, F. Driessens, A. Gill, S. Harris, G. Hutchinson, C. Kulisa, M. Merriman, P. Mistry, T. Parton, J. Turner, I. Whitcombe, and S. Wright, 4-(1,3-Thiazol-2-yl)morpholine derivatives as inhibitors of phosphoinositide 3-kinase, Bioorg. Med. Chem. Lett. 18 (2008), pp. 4316–4320.
  • R. Frédérick, C. Mawson, J.D. Kendall, C. Chaussade, G.W. Rewcastle, P.R. Shepherd, and W.A. Denny, Phosphoinositide-3-kinase (PI3K) inhibitors: Identification of new scaffolds using virtual screening, Bioorg. Med. Chem. Lett. 19 (2009), pp. 5842–5847.
  • R.M. Sanchez, K. Erhard, M.A. Hardwicke, H. Lin, J. McSurdy-Freed, R. Plant, K. Raha, C.M. Rominger, M.D. Schaber, M.D. Spengler, M.L. Moore, H. Yu, J.I. Luengo, R. Tedesco, and R.A. Rivero, Synthesis and structure-activity relationships of 1,2,4-triazolo[1,5-a]pyrimidin-7(3H)-ones as novel series of potent β isoform selective phosphatidylinositol 3-kinase inhibitors, Bioorg. Med. Chem. Lett. 22 (2012), pp. 3198–3202.
  • D.P. Sutherlin, S. Baker, A. Bisconte, P.M. Blaney, A. Brown, B.K. Chan, D. Chantry, G. Castanedo, P. DePledge, P. Goldsmith, D.M. Goldstein, T. Hancox, J. Kaur, D. Knowles, R. Kondru, J. Lesnick, M.C. Lucas, C. Lewis, J. Murray, A.J. Nadin, J. Nonomiya, J. Pang, N. Pegg, S. Price, K. Reif, B.S. Safina, L. Salphati, S. Staben, E.M. Seward, S. Shuttleworth, S. Sohal, Z.K. Sweeney, M. Ultsch, B. Waszkowycz, and B. Wei, Potent and selective inhibitors of PI3Kδ: Obtaining isoform selectivity from the affinity pocket and tryptophan shelf, Bioorg. Med. Chem. Lett. 22 (2012), pp. 4296–4302.
  • K. Ellard, M. Sunose, K. Bell, N. Ramsden, G. Bergamini, and G. Neubauer, Discovery of novel PI3Kγ/δ inhibitors as potential agents for inflammation, Bioorg. Med. Chem. Lett. 22 (2012), pp. 4546–4549.
  • B. Barlaam, S. Cosulich, S. Degorce, M. Fitzek, F. Giordanetto, S. Green, T. Inghardt, L. Hennequin, U. Hancox, C. Lambert-van der Brempt, R. Morgentin, S. Pass, P. Plé, T. Saleh, and L. Ward, Discovery of 9-(1-anilinoethyl)-2-morpholino-4-oxo-pyrido[1,2-a]pyrimidine-7-carboxamides as PI3Kβ/δ inhibitors for the treatment of PTEN-deficient tumours, Bioorg. Med. Chem. Lett. 24 (2014), pp. 3928–3935.
  • J.D. Kendall, G.W. Rewcastle, R. Frederick, C. Mawson, W.A. Denny, E.S. Marshall, B.C. Baguley, C. Chaussade, S.P. Jackson, and P.R. Shepherd, Synthesis, biological evaluation and molecular modelling of sulfonhydrazides as selective PI3K p110alpha inhibitors, Bioorg. Med. Chem. 15 (2007), pp. 7677–7687.
  • R.R. Kuang, F. Qian, Z. Li, and D.Z.J. Wei, Study on improving the selectivity of compounds that inhibit two PI3Ks (gamma and delta), J. Mol. Model. 12 (2006), pp. 445–452.
  • F. Gonzalez-Lopez de Turiso, Y. Shin, M. Brown, M. Cardozo, Y. Chen, D. Fong, X. Hao, X. He, K. Henne, Y.L. Hu, M.G. Johnson, T. Kohn, J. Lohman, H.J. McBride, L.R. McGee, J.C. Medina, D. Metz, K. Miner, D. Mohn, V. Pattaropong, J. Seganish, J.L. Simard, S. Wannberg, D.A. Whittington, G. Yu, and T.D. Cushing, Discovery and in vivo evaluation of dual PI3Kβ/δ inhibitors, J. Med. Chem. 55 (2012), pp. 7667–7685.
  • J.M. Murray, Z.K. Sweeney, B.K. Chan, M. Balazs, E. Bradley, G. Castanedo, C. Chabot, D. Chantry, M. Flagella, D.M. Goldstein, R. Kondru, J. Lesnick, J. Li, M.C. Lucas, J. Nonomiya, J. Pang, S. Price, L. Salphati, B. Safina, P.P. Savy, E.M. Seward, M. Ultsch, and D.P. Sutherlin, Potent and highly selective benzimidazole inhibitors of PI3-kinase delta, J. Med. Chem. 55 (2012), pp. 7686–7695.
  • B.S. Safina, S. Baker, M. Baumgardner, P.M. Blaney, B.K. Chan, Y.H. Chen, M.W. Cartwright, G. Castanedo, C. Chabot, A.J. Cheguillaume, P. Goldsmith, D.M. Goldstein, B. Goyal, T. Hancox, R.K. Handa, P.S. Iyer, J. Kaur, R. Kondru, J.R. Kenny, S.L. Krintel, J. Li, J. Lesnick, M.C. Lucas, C. Lewis, S. Mukadam, J. Murray, A.J. Nadin, J. Nonomiya, F. Padilla, W.S. Palmer, J. Pang, N. Pegg, and S. Price, K, Reif, L. Salphati, P.A. Savy, E.M. Seward, S. Shuttleworth, S. Sohal, Z.K. Sweeney, S. Tay, P. Tivitmahaisoon, B. Waszkowycz, B. Wei, Q. Yue, C. Zhang, and D.P. Sutherlin DP, Discovery of novel PI3-kinase δ specific inhibitors for the treatment of rheumatoid arthritis: Taming CYP3A4 time-dependent inhibition, J. Med. Chem. 55 (2010), pp. 5887–5900.
  • Maestro, version 9.3, User Manual, Schrödinger, LLC, New York, 2012.
  • Ligprep, version 2.5, User Manual, Schrödinger, LLC, New York, 2012.
  • http://www.rcsb.org/pdb/home/home.do.
  • G.M. Sastry, M. Adzhigirey, T. Day, R. Annabhimoju, and W. Sherman, Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments, J. Comput. Aided Mol. Des. 27 (2013), pp. 221–234.
  • Glide, version 5.8, User Manual, Schrödinger, LLC, New York, 2012.
  • R.A. Friesner, J.L. Banks, R.B. Murphy, T.A. Halgren, J.J. Klicic, D.T. Mainz, M.P. Repasky, E.H. Knoll, D.E. Shaw, M. Shelley, J.K. Perry, P. Francis, and Glide Shenkin, A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy, J. Med. Chem. 47 (2004), pp. 1739–1749.
  • PHASE, version 3.4, Schrödinger, LLC, New York, 2012.
  • S.L. Dixon, A.M. Smondyrev, E.H. Knoll, S.N. Rao, D.E. Shaw, and R.A. Friesner, PHASE: A new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening. 1. Methodology and preliminary results, J. Comput. Aided Mol. Des. 20 (2006), pp. 647–671.
  • J. Verma, V.M. Khedkar, and E.C. Coutinho, 3D-QSAR in drug design: A review, Curr. Top. Med. Chem. 10 (2010), pp. 95–115.
  • A. Golbraikh and A. Tropsha, Beware of q2!, J. Mol. Graph. Model. 20 (2002), pp. 269–276.
  • M. Kaur, A. Kumari, M.S. Bahia, and O. Silakari, Designing of new multi-targeted inhibitors of spleen tyrosine kinase (Syk) and zeta-associated protein of 70 kDa (ZAP-70) using hierarchical virtual screening protocol, J. Mol. Graph. Model. 39 (2013), pp. 165–175.
  • S. Weaver and M.P. Gleeson, The importance of the domain of applicability in QSAR modeling, J. Mol. Graph. Model. 26 (2008), pp. 1315–1326.
  • V.D. Mouchlis, G. Melagraki, and T. Mavromoustakos, Kollias, and A. Afantitis, Molecular modeling on pyrimidine-urea inhibitors of TNF-α production: An integrated approach using a combination of molecular docking, classification techniques, and 3D-QSAR CoMSIA, J. Chem. Inf. Model. 52 (2012), pp. 711–723.
  • R.D. Cramer, J.D. Bunce, D.E. Patterson, and I.E. Frank, Crossvalidation, bootstrapping, and partial least squares compared with multiple regression in conventional QSAR studies, Quant. Struct. Act. Relat. 7 (1988), pp. 18–25.
  • N.K. Salam, R. Nuti, and W. Sherman, Novel method for generating structure-based pharmacophores using energetic analysis, J. Chem. Inf. Model. 49 (2009), pp. 2356–2368.
  • B.V. Kumar, R. Kotla, R. Buddiga, J. Roy, S.S. Singh, R. Gundla, M. Ravikumar, and J.A. Sarma, Ligand-based and structure-based approaches in identifying ideal pharmacophore against c-Jun N-terminal kinase-3, J. Mol. Model. 17 (2011), pp. 151–163.
  • A.S. Reddy, S.P. Pati, P.P. Kumar, H.N. Pradeep, and G.N. Sastry, Virtual screening in drug discovery – a computational perspective, Curr. Protein Pept. Sci. 8 (2007), pp. 329–351.
  • S.H. Lu, J.W. Wu, H.L. Liu, J.H. Zhao, K.T. Liu, C.K. Chuang, H.Y. Lin, W.B. Tsai, and Y. Ho, The discovery of potential acetylcholinesterase inhibitors: A combination of pharmacophore modeling, virtual screening, and molecular docking studies, J. Biomed. Sci. 18 (2011), p. b22.
  • A. Bender and R.C. Glen, A discussion of measures of enrichment in virtual screening: Comparing the information content of descriptors with increasing levels of sophistication, J. Chem. Inf. Model. 45 (2005), pp. 1369–1375.
  • QikProp, version 3.5; Schrödinger, LLC, New York, NY, 2012.
  • Prime, version 3.1, Schrödinger, LLC, New York, NY, 2012.
  • M.C. Lucas, D.M. Goldstein, J.C. Hermann, A. Kuglstatter, W. Liu, K.C. Luk, F. Padilla, M. Slade, A.G. Villaseñor, J. Wanner, W. Xie, X. Zhang, and C. Liao, Rational design of highly selective spleen tyrosine kinase inhibitors, J. Med. Chem. 55 (2012), pp. 10414–10423.
  • S. Atwell, J.M. Adams, J. Badger, M.D. Buchanan, I.K. Feil, K.J. Froning, X. Gao, J. Hendle, K. Keegan, B.C. Leon, H.J. Müller-Dieckmann, V.L. Nienaber, B.W. Noland, K. Post, K.R. Rajashankar, A. Ramos, M. Russell, S.K. Burley, and S.G. Buchanan, A novel mode of Gleevec binding is revealed by the structure of spleen tyrosine kinase, J. Biol. Chem. 279 (2004), pp. 55827–55832.
  • G. Thoma, J. Blanz, P. Bühlmayer, P. Drückes, M. Kittelmann, A.B. Smith, M. van Eis, E. Vangrevelinghe, H.G. Zerwes, J.J. Che, X. He, Y. Jin, C.C. Lee, P.Y. Michellys, T. Uno, and H. Liu, Syk inhibitors with high potency in presence of blood, Bioorg. Med. Chem. Lett. 24 (2014), pp. 2278–2282.
  • G. Kozlov, R. Vinaik, and K. Gehring, Triosephosphate isomerase is a common crystallization contaminant of soluble His-tagged proteins produced in Escherichia coli, Acta Crystallogr, Sect. F. Struct. Biol. Cryst. Commun. 69 (2013), pp. 499–502.
  • L.R. McLean, Y. Zhang, N. Zaidi, X. Bi, R. Wang, R. Dharanipragada, J.G. Jurcak, T.A. Gillespy, Z. Zhao, K.Y. Musick, Y.M. Choi, M. Barrague, J. Peppard, M. Smicker, M. Duguid, A. Parkar, J. Fordham, and D. Kominos, X-ray crystallographic structure-based design of selective thienopyrazole inhibitors for interleukin-2-inducible tyrosine kinase, Bioorg. Med. Chem. Lett. 22 (2012), pp. 3296–3300.
  • K.S. Currie, J.E. Kropf, T. Lee, P. Blomgren, J. Xu, Z. Zhao, S. Gallion, J.A. Whitney, D. Maclin, E.B. Lansdon, P. Maciejewski, A.M. Rossi, H. Rong, J. Macaluso, J. Barbosa, J.A. Di Paolo, and S.A. Mitchell, Discovery of GS-9973, a selective and orally efficacious inhibitor of spleen tyrosine kinase, J. Med. Chem. 57 (2014), pp. 3856–3873.
  • A.T. Berndt, S. Miller, O. Williams, D.D. Le, B.T. Houseman, J.I. Pacold, F. Gorrec, W.C. Hon, Y. Liu, C. Rommel, P. Gaillard, T. Rückle, M.K. Schwarz, K.M. Shokat, J.P. Shaw, and R.L. Williams, The p110 delta structure: Mechanisms for selectivity and potency of new PI(3)K inhibitors, Nat. Chem. Biol. 6 (2010), pp. 117–124.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.