95
Views
0
CrossRef citations to date
0
Altmetric
Articles

Structure-based model profiles affinity constant of drugs with hPEPT1 for rapid virtual screening of hPEPT1’s substrate

&
Pages 637-652 | Received 16 Apr 2016, Accepted 19 Jul 2016, Published online: 09 Aug 2016

References

  • M. Drozdzik, C. Groer, J. Penski, J. Lapczuk, M. Ostrowski, Y. Lai, B. Prasad, J.D. Unadkat, W. Siegmund, and S. Oswald, Protein abundance of clinically relevant multidrug transporters along the entire length of the human intestine, Mol. Pharm. 11 (2014), pp. 3547–3555.
  • M. Brandsch, Drug transport via the intestinal peptide transporter PepT1, Curr. Opin. Pharmacol. 13 (2013), pp. 881–887.
  • R. Boggavarapu, J.M. Jeckelmann, D. Harder, Z. Ucurum, and D. Fotiadis, Role of electrostatic interactions for ligand recognition and specificity of peptide transporters, BMC Biol. 13 (2015), p. 58.
  • Y. Sun, J. Sun, S. Shi, Y. Jing, S. Yin, Y. Chen, G. Li, Y. Xu, and Z. He, Synthesis, transport and pharmacokinetics of 5'-amino acid ester prodrugs of 1-beta-D-arabinofuranosylcytosine, Mol. Pharm. 6 (2009), pp. 315–325.
  • F. Guettou, E.M. Quistgaard, L. Tresaugues, P. Moberg, C. Jegerschold, L. Zhu, A.J. Jong, P. Nordlund, and C. Low, Structural insights into substrate recognition in proton-dependent oligopeptide transporters, EMBO Rep. 14 (2013), pp. 804–810.
  • S. Newstead, D. Drew, A.D. Cameron, V.L. Postis, X. Xia, P.W. Fowler, J.C. Ingram, E.P. Carpenter, M.S. Sansom, M.J. McPherson, S.A. Baldwin, and S. Iwata, Crystal structure of a prokaryotic homologue of the mammalian oligopeptide-proton symporters, PepT1 and PepT2, EMBO J. 30 (2011), pp. 417–426.
  • N. Solcan, J. Kwok, P.W. Fowler, A.D. Cameron, D. Drew, S. Iwata, and S. Newstead, Alternating access mechanism in the POT family of oligopeptide transporters, EMBO J. 31 (2012), pp. 3411–3421.
  • K.S. Khomane, P.P. Nandekar, B. Wahlang, P. Bagul, N. Shaikh, Y.B. Pawar, C.L. Meena, A.T. Sangamwar, R. Jain, K. Tikoo, and A.K. Bansal, Mechanistic insights into PEPT1-mediated transport of a novel antiepileptic, NP-647, Mol. Pharm. 9 (2012), pp. 2458–2468.
  • S. Ekins, J.S. Johnston, P. Bahadduri, V.M. D'Souza, A. Ray, C. Chang, and P.W. Swaan, In vitro and pharmacophore-based discovery of novel hPEPT1 inhibitors, Pharm. Res. 22 (2005), pp. 512–517.
  • S. Wanchana, F. Yamashita, H. Hara, S. Fujiwara, M. Akamatsu, and M. Hashida, Two- and three-dimensional QSAR of carrier-mediated transport of beta-lactam antibiotics in Caco-2 cells, J. Pharm. Sci. 93 (2004), pp. 3057–3065.
  • S. Gebauer, I. Knutter, B. Hartrodt, M. Brandsch, K. Neubert, and I. Thondorf, Three-dimensional quantitative structure-activity relationship analyses of peptide substrates of the mammalian H+/peptide cotransporter PEPT1, J. Med. Chem. 46 (2003), pp. 5725–5734.
  • S.B. Larsen, F.S. Jorgensen, and L. Olsen, QSAR models for the human H(+)/peptide symporter, hPEPT1: Affinity prediction using alignment-independent descriptors, J. Chem. Inf. Model. 48 (2008), pp. 233–241.
  • S.B. Larsen, D.H. Omkvist, B. Brodin, C.U. Nielsen, B. Steffansen, L. Olsen, and F.S. Jorgensen, Discovery of ligands for the human intestinal Di-/Tripeptide transporter (hPEPT1) using a QSAR-assisted virtual screening strategy, ChemMedChem 4 (2009), pp. 1439–1445.
  • R. Andersen, F.S. Jorgensen, L. Olsen, J. Vabeno, K. Thorn, C.U. Nielsen, and B. Steffansen, Development of a QSAR model for binding of tripeptides and tripeptidomimetics to the human intestinal di-/tripeptide transporter hPEPT1, Pharm. Res. 23 (2006), pp. 483–492.
  • A. Biegel, S. Gebauer, B. Hartrodt, M. Brandsch, K. Neubert, and I. Thondorf, Three-dimensional quantitative structure-activity relationship analyses of beta-lactam antibiotics and tripeptides as substrates of the mammalian H+/peptide cotransporter PEPT1, J. Med. Chem. 48 (2005), pp. 4410–4419.
  • D.H. Omkvist, S.B. Larsen, C.U. Nielsen, B. Steffansen, L. Olsen, F.S. Jorgensen, and B. Brodin, A quantitative structure-activity relationship for translocation of tripeptides via the human proton-coupled peptide transporter, hPEPT1 (SLC15A1), AAPS J. 12 (2010), pp. 385–396.
  • A. Sedykh, D. Fourches, J. Duan, O. Hucke, M. Garneau, H. Zhu, P. Bonneau, and A. Tropsha, Human intestinal transporter database: QSAR modeling and virtual profiling of drug uptake, efflux and interactions, Pharm. Res. 30 (2013), pp. 996–1007.
  • P. Luckner and M. Brandsch, Interaction of 31 beta-lactam antibiotics with the H+/peptide symporter PEPT2: Analysis of affinity constants and comparison with PEPT1, Eur. J. Pharm. Biopharm. 59 (2005), pp. 17–24.
  • A. Biegel, S. Gebauer, B. Hartrodt, I. Knutter, K. Neubert, M. Brandsch, and I. Thondorf, Recognition of 2-aminothiazole-4-acetic acid derivatives by the peptide transporters PEPT1 and PEPT2, Eur. J. Pharm. Sci. 32 (2007), pp. 69–76.
  • L. Sun, X. Liu, R. Xiang, C. Wu, Y. Wang, Y. Sun, J. Sun, and Z. He, Structure-based prediction of human intestinal membrane permeability for rapid in silico BCS classification, Biopharm. Drug Dispos. 34 (2013), pp. 321–335.
  • M. Brandsch, I. Knutter, and F.H. Leibach, The intestinal H+/peptide symporter PEPT1: Structure-affinity relationships, Eur. J. Pharm. Sci. 21 (2004), pp. 53–60.
  • J. Kamphorst, L. Cucurull-Sanchez, and B. Jones, A performance evaluation of multiple classification models of human PEPT1 inhibitors and non-inhibitors, QSAR Comb. Sci. 26 (2007), pp. 220–226.
  • Z. Yan, J. Sun, Y. Chang, Y. Liu, Q. Fu, Y. Xu, Y. Sun, X. Pu, Y. Zhang, Y. Jing, S. Yin, M. Zhu, Y. Wang, and Z. He, Bifunctional peptidomimetic prodrugs of didanosine for improved intestinal permeability and enhanced acidic stability: Synthesis, transepithelial transport, chemical stability and pharmacokinetics, Mol. Pharm. 8 (2011), pp. 319–329.
  • S.V. Gupta, D. Gupta, J. Sun, A. Dahan, Y. Tsume, J. Hilfinger, K.D. Lee, and G.L. Amidon, Enhancing the intestinal membrane permeability of zanamivir: A carrier mediated prodrug approach, Mol. Pharm. 8 (2011), pp. 2358–2367.
  • H. Steingrimsdottir, A. Gruber, C. Palm, G. Grimfors, M. Kalin, and S. Eksborg, Bioavailability of aciclovir after oral administration of aciclovir and its prodrug valaciclovir to patients with leukopenia after chemotherapy, Antimicrob. Agents Chemother. 44 (2000), pp. 207–209.
  • M. Sugawara, W. Huang, Y.J. Fei, F.H. Leibach, V. Ganapathy, and M.E. Ganapathy, Transport of valganciclovir, a ganciclovir prodrug, via peptide transporters PEPT1 and PEPT2, J. Pharm. Sci. 89 (2000), pp. 781–789.
  • F. Li, L. Hong, C.I. Mau, R. Chan, T. Hendricks, C. Dvorak, C. Yee, J. Harris, and T. Alfredson, Transport of levovirin prodrugs in the human intestinal Caco-2 cell line, J. Pharm. Sci. 95 (2006), pp. 1318–1325.
  • C.P. Landowski, X. Song, P.L. Lorenzi, J.M. Hilfinger, and G.L. Amidon, Floxuridine amino acid ester prodrugs: Enhancing Caco-2 permeability and resistance to glycosidic bond metabolism, Pharm. Res. 22 (2005), pp. 1510–1518.
  • H. Li, J. Sun, Y. Wang, X. Sui, L. Sun, J. Zhang, and Z. He, Structure-based in silico model profiles the binding constant of poorly soluble drugs with beta-cyclodextrin, Eur. J. Pharm. Sci. 42 (2011), pp. 55–64.
  • H. Li, J. Sun, X. Sui, J. Liu, Z. Yan, X. Liu, Y. Sun, and Z. He, First-principle, structure-based prediction of hepatic metabolic clearance values in human, Eur. J. Med. Chem. 44 (2009), pp. 1600–1606.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.