121
Views
2
CrossRef citations to date
0
Altmetric
Articles

QSPR studies for predicting polarity parameter of organic compounds in methanol using support vector machine and enhanced replacement method

&
Pages 977-997 | Received 18 Jun 2016, Accepted 02 Sep 2016, Published online: 23 Sep 2016

References

  • F. Poole, The Essence of Chromatography, Elsevier, Amsterdam, 2003.
  • E. Lázaro, P. Izquierdo, C. Ràfols, M. Rosés, and E. Bosch, Prediction of retention in reversed-phase liquid chromatography by means of the polarity parameter model, J. Chromatogr. A 1216 (2009), pp. 5214–5227.
  • Y. Wu, Z. Wang, J. Gu, and Y. Wang, Determination of acetonitrile volume fraction in mobile phase by HPLC, Chem. Res. Chinese U. 24 (2008), pp. 694–696.
  • C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, 3rd ed., Wiley, Weinheim, 2003.
  • B.P. Johnson, M.G. Khaledi, and J.G. Dorsey, Solvatochromic solvent polarity measurements and retention in reversed-phase liquid chromatography, Anal. Chem. 58 (1986), pp. 2354–2365.
  • P. Izquierdo, M. Roses, and E. Bosch, Polarity parameters of the symmetry c18 and chromolith performance rp-18 monolithic chromatographic columns, J. Chromatogr. A 1107 (2006), pp. 96–103.
  • E. Bosch, P. Bou, and M. Roses, Linear description of solute retention in reversed-phase liquid chromatography by a new mobile phase polarity parameter, Anal. Chim. Acta 299 (1994), pp. 219–229.
  • M. Rosés, I. Canals, H. Allemann, K. Siigur, and E. Bosch, Retention of ionizable compounds on HPLC. 2. Effect of pH, ionic strength, and mobile phase composition on the retention of weak acids, Anal. Chem. 68 (1996), pp. 4094–4100.
  • J.R. Torres-Lapasio, M.C. Garcýa-A′ lvarez-Coque, M. Roses, and E. Bosch, Prediction of the retention in reversed-phase liquid chromatography using solute–mobile phase-stationary phase polarity parameters, J. Chromatogr. A 955 (2002), pp. 19–34.
  • R. Bosque, J. Sales, E. Bosch, M. Roses, M.C. Garcýa-A lvarez-Coque, and J.M. Torres-Lapasio, A QSPR study of the p solute polarity parameter to estimate retention in HPLC, J. Chem. Inf. Comput. Sci. 43 (2003), pp. 1240–1247.
  • M. Rosés and E. Bosch, linear solvation energy relationship in reversed phase liquid chromatography. Prediction of retention from a single solvent and a single solute parameter, Anal. Chim. Acta 274 (1993), pp. 147–162.
  • J.R. Torres-Lapasio, M.C. Garcıa-A lvarez-Coque, E. Bosch, and M. Roses, Considerations on the modelling and optimisation of resolution of ionisable compounds in extended pH-range columns, J. Chromatogr. A 2005 (1089), pp. 170–186.
  • X. Xu, F. Luan, H. Liu, J. Cheng, and X. Zhang, Prediction of the maximum absorption wavelength of azobenzene dyes by QSPR tools, Spectro. Chim. Acta A 83 (2011), pp. 353–361.
  • H. Golmohammadi, Z. Dashtbozorgi, and W.E. Acree Jr, QSPR models for prediction of gas-to-heptane and gas-to-hexadecane solvation enthalpies of organic compounds from theoretical molecular descriptors, Struct. Chem. 24 (2013), pp. 1799–1810.
  • H. Golmohammadi, Z. Dashtbozorgi, and W.E. Acree Jr, Application of QSPR for the prediction of gas to 1-octanol solvation enthalpy using support vector regression, Phys. Chem. Liq. 51 (2013), pp. 182–202.
  • Z. Dashtbozorgi, H. Golmohammadi, and W.E. Acree Jr, Prediction of gas to water solvation enthalpy of organic compounds using support vector machine, Thermochim. Acta 539 (2012), pp. 7–15.
  • H. Golmohammadi, Z. Dashtbozorgi, and W.E. Acree Jr, Prediction of bovine serum albumin–water partition coefficients of a wide variety of neutral organic compounds by means of support vector machine, Mol. Inf. 31 (2012), pp. 867–878.
  • Z. Dashtbozorgi, H. Golmohammadi, and W.E. Acree Jr, Quantitative structure–activity relationship prediction of blood-to-brain partitioning behavior using support vector machine, Eur. J. Pharm. Sci. 47 (2012), pp. 421–429.
  • A. Toubaei, H. Golmohammadi, Z. Dashtbozorgi, and W.E. Acree Jr, QSPR studies for predicting gas to acetone and gas to acetonitrile solvation enthalpies using support vector machine, J. Mol. Liq. 175 (2012), pp. 24–32.
  • Z. Dashtbozorgi, H. Golmohammadi, and W.E. Acree Jr, Prediction of gas-to-ionic liquid partition coefficient of organic solutes dissolved in 1-(2-methoxyethyl)-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate using QSPR approaches, J. Mol. Liq. 201 (2015), pp. 21–29.
  • J.R. Torres-Lapasio, M.C. Garcia-Alvarez-Coque, M. Roses, E. Bosch, A.M. Zissimos, and M.H. Abraham, Analysis of a solute polarity parameter in reversed-phase liquid chromatography on a linear solvation relationship basis, Anal. Chem. Acta 515 (2004), pp. 209–227.
  • R. Todeschini and V. Consonni, Molecular Descriptors for Chemoinformatics, Wiley VCH, Weinheim, 2009.
  • HyperChem, re. 4 for Windows, Autodesk, Sansalito, CA, 1995.
  • R. Katritzky, V.S. Lobanov, and M. Karelson, CODESSA Training Manual, 1995.
  • O. Ivanciuc, CODESSA Version 2.13 for Windows, J. Chem. Inf. Comput. Sci. 37 (1997), pp. 405–406.
  • A.G. Mercader, P.R. Duchowicz, F.M. Fernández, and E.A. Castro, Advances in the replacement and enhanced replacement method in QSAR and QSPR theories, J. Chem. Inf. Model. 51 (2011), pp. 1575–1581.
  • P.R. Duchowicz, E.A. Castro, F.M. Fernández, and M.P. González, A new search algorithm of QSPR/QSAR theories: Normal boiling points of some organic molecules, Chem. Phys. Lett. 412 (2005), pp. 376–380.
  • MATLAB 7.0, The Mathworks Inc., Natick, MA, USA 2005; software available at http://www.mathworks.com.
  • A. Baghban, M.A. Ahmadi, B. Pouladi, and B. Amanna, Phase equilibrium modeling of semi-clathrate hydrates of seven commonly gases in the presence of TBAB ionic liquid promoter based on a low parameter connectionist technique, J. Supercrit. Fluids 101 (2015), pp. 184–192.
  • V.N. Vapnik and A. Lerner, Pattern recognition using generalized portrait method, Autom. Remote Control 24 (1963), pp. 774–780.
  • V.N. Vapnik and A.Y. Chervonenkis, A note on one class of perceptrons, Autom. Remote Control 25 (1964), pp. 821–837.
  • V.N. Vapnik, Statistical Learning Theory, 1st ed., Wiley-Interscience, New York, NY, 1998.
  • L. Davis, Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York, NY, 1991.
  • P. Gramatica, Principles of QSAR models validation: Internal and external, QSAR Comb. Sci. 26 (2007), pp. 694–701.
  • D.S. Cao, Y.Z. Liang, Q.S. Xu, H.D. Li, and X. Chen, A new strategy of outlier detection for QSAR/QSPR, J. Comput. Chem. 31 (2010), pp. 592–602.
  • J. Yan, J.H. Huang, M. He, H.B. Lu, R. Yang, B. Kong, Q.S. Xu, and Y.Z. Liang, Prediction of retention indices for frequently reported compounds of plant essential oils using multiple linear regression, partial least squares, and support vector machine, J. Sep. Sci. 36 (2013), pp. 2464–2471.
  • D.S. Cao, Y.Z. Liang, Q.S. Xu, Y.H. Yun, and H.D. Li, Toward better QSAR/QSPR modeling: Simultaneous outlier detection and variable selection using distribution of model features, J. Comput. Aided Mol. Des. 25 (2011), pp. 67–80.
  • L. Eriksson, J. Jaworska, A.P. Worth, M.T. Cronin, R.M. McDowell, and P. Gramatica, Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs, Environ. Health Perspect. 111 (2003), pp. 1361–1375.
  • A. Golbraikh, M. Shen, Z. Xiao, Y. Xiao, K.H. Lee, and A. Tropsha, Rational selection of training and test sets for the development of validated QSAR models, J. Comput. Aided Mol. Des. 17 (2003), pp. 241–253.
  • A. Golbraikh and A. Tropsha, Beware of q2, J. Mol. Graph. Model. 20 (2002), pp. 269–276.
  • C.Y. Zhao, H.X. Zhang, X.Y. Zhang, M.C. Liu, Z.D. Hu, and B.T. Fan, Application of support vector machine (SVM) for prediction toxic activity of different data sets, Toxicol. 217 (2006), pp. 105–119.
  • V.K. Agrawal and P.V. Khadikar, QSAR prediction of toxicity of nitrobenzenes, Bioorg. Med. Chem. 9 (2001), pp. 3035–3040.
  • E. Pourbasheer, S. Riahi, M.R. Ganjali, and P. Norouzi, Quantitative structure-activity relationship (QSAR) study of interleukin-1 receptor associated kinase 4 (IRAK-4) inhibitor activity by the genetic algorithm and multiple linear regression (GA-MLR) method, J. Enzyme Inhib. Med. Chem. 25 (2010), pp. 844–853.
  • N.S. Zefirov, M.A. Kirpichenok, F.F. Izmailov, and M.I. Trofimov, Scheme for the calculation of the electronegativities of atoms in a molecule in the framework of Sanderson’s principle, Dokl. Akad. Nauk SSSR 296 (1987), pp. 883–887.
  • N.S. Zefirov and M.A. Kirpichenok, Electronegativity and molecular geometry. I. General principles of the method and analysis of the effect of short-range electrostatic interactions on bond lengths in organic molecules, Zh. Org. Khim. 23 (1987), pp. 673–691.
  • LB. Kier, Structural information from molecular connectivity 4cpc index, J. Pharm. Sci. 69 (1980), pp. 807–810.
  • D. Bonchev, Information Theoretic Indices for Characterization of Chemical Structure, Wiley-Interscience, New York, NY, 1983.
  • A.B. Sannigrahi, Ab initio molecular orbital calculations of bond index and valency, Adv. Quant. Chem. 23 (1992), pp. 301–351.
  • M. Karelson, Molecular Descriptors in QSAR/QSPR, Wiley-Interscience, New York, NY, 2000.
  • D.T. Stanton and P.C. Jurs, Development and use of charged partial surface area structural descriptors in computer-assisted quantitative structure-property relationship studies, Anal. Chem. 62 (1990), pp. 2323–2329.
  • D.T. Stanton, L.M. Egolf, P.C. Jurs, and M.G. Hicks, Computer-assisted prediction of normal boiling points of pyrans and pyrroles, J. Chem. Inf. Comput. Sci. 32 (1992), pp. 306–316.
  • S. Ma, M. Lv, F. Deng, X. Zhang, H. Zhai, and W. Lv, Predicting the ecotoxicity of ionic liquids towards Vibrio fischeri using genetic function approximation and least squares support vector machine, J. Hazard Mater. 283 (2015), pp. 591–598.
  • R. Bosque and J. Sales, A QSPR Study of the p solute polarity parameter to estimate retention in HPLC, J. Chem. Inf. Comput. Sci. 43 (2003), pp. 1240–1247.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.