265
Views
21
CrossRef citations to date
0
Altmetric
Articles

Insight into the structural requirements of pyrimidine-based phosphodiesterase 10A (PDE10A) inhibitors by multiple validated 3D QSAR approaches

, , &
Pages 253-273 | Received 01 Sep 2016, Accepted 02 Mar 2017, Published online: 21 Mar 2017

References

  • W.D. Shipe, S.S. Sharik, J.C. Barrow, G.B. McGaughey, C.R. Theberge, J.M. Uslaner, Y. Yan, J.J. Renger, S.M. Smith, P.J. Coleman, and C.D. Cox, Discovery and optimization of a series of pyrimidine-based phosphodiesterase 10A (PDE10A) inhibitors through fragment screening, structure-based design, and parallel synthesis, J. Med. Chem. 58 (2015), pp. 7888–7894.
  • I.T. Raheem, M.J. Breslin, C. Fandozzi, J. Fuerst, N. Hill, S. Huszar, M. Kandebo, S.H. Kim, B. Ma, G. McGaughey, J.J. Renger, J.D. Schreier, S. Sharma, S. Smith, J. Uslaner, Y. Yan, P.J. Coleman, and C.D. Cox, Discovery of tetrahydropyridopyrimidinephosphodiesterase 10A inhibitors for the treatment of schizophrenia, Bioorg. Med. Chem. Lett. 15 (2012), pp. 5903–5908.
  • D.T. Manallack, R.A. Hughes, and P.E. Thompson, The next generation of phosphodiesterase inhibitors: Structural clues to ligand and substrate selectivity of phosphodiesterases, J. Med. Chem. 48 (2005), pp. 3449–3462.
  • F.S. Menniti, W.S. Faraci, and C.J. Schmidt, Phosphodiesterases in the CNS: Targets for drug development, Nat. Rev. Drug Discov. 5 (2006), pp. 660–670.
  • J. Kehler and J. Nielsen, PDE10A inhibitors: Novel therapeutic drugs for schizophrenia, Curr. Pharm. Des. 17 (2011), pp. 137–150.
  • J. Siuciak and C.A. Strick, Phosphodiesterase 10A inhibitors as a novel therapeutic approach for schizophrenia, Exp. Opin. Drug Discov. 2 (2007), pp. 1001–1009.
  • M. Rowley, L.J. Bristow, and P.H. Hutson, Current and novel approaches to the drug treatment of schizophrenia, J. Med. Chem. 44 (2001), pp. 477–501.
  • T.A. Chappie, C.J. Helal, and X. Hou, Current landscape of phosphodiesterase 10A (PDE10A) inhibition, J. Med. Chem. 55 (2012), pp. 7299–7331.
  • G.M. Rose, A. Hopper, M.D. Vivo, and A. Tehim, Phosphodiesterase inhibitors for cognitive enhancement, Curr. Pharm. Des. 11 (2005), pp. 3329–3334.
  • K. Fujishige, J. Kotera, and K. Omori, Striatum- and testis-specific phosphodiesterase PDE10A isolation and characterization of a rat PDE10A, Eur. J. Biochem. 266 (1999), pp. 1118–1127.
  • A. Cherkasov, E.N. Muratov, D. Fourches, A. Varnek, I.I. Baskin, M. Cronin, J. Dearden, P. Gramatica, Y.C. Martin, R. Todeschini, V. Consonni, V.E. Kuz’min, R. Cramer, R. Benigni, C. Yang, J. Rathman, L. Terfloth, J. Gasteiger, A. Richardand, and A. Tropsha, QSAR Modeling: Where have you been? Where are you going to? J. Med. Chem. 57 (2014), pp. 4977–5010.
  • C. Hansch, P. Maloney, T. Fujita, and R. Muir, Correlation of biological activity of phenoxyacetic acids with Hammett substituent constants and partition coefficients, Nature 194 (1962), pp. 178–180.
  • R.D. Cramer, The inevitable QSAR renaissance, J. Comput.-Aided. Mol. Des. 26 (2012), pp. 35–38.
  • N. Chirico and P. Gramatica, Real external predictivity of QSAR models: How to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient, J. Chem. Inf. Model. 51 (2011), pp. 2320–2335.
  • N. Chirico and P. Gramatica, Real external predictivity of QSAR models. Part 2. New intercomparable thresholds for different validation criteria and the need for scatter plot inspection, J. Chem. Inf. Model. 52 (2012), pp. 2044–2058.
  • S.A. Amin, S. Bhargava, N. Adhikari, S. Gayen, and T. Jha, Exploring pyrazolo[3,4-d]pyrimidine phosphodiesterase 1 (PDE1) inhibitors: A predictive approach combining comparative validated multiple molecular modeling techniques, J. Biomol. Struct. Dyn. (2017) in press. doi: 10.1080/07391102.2017.1288659.
  • R.D. Cramer and B. Wendt, Template CoMFA: The 3D-QSAR grail? J. Chem. Inf. Model. 54 (2014), pp. 660–671.
  • R.D. Cramer and B. Wendt, Pushing the boundaries of 3D-QSAR, J. Comput.-Aided Drug Des. 21 (2007), pp. 23–32.
  • L.M. Shi, H. Fang, W. Tong, J. Wu, R. Perkins, R.M. Blair, W.S. Branham, S.L. Dial, C.L. Moland, and D.M. Sheehan, QSAR models using a large diverse set of estrogens, J. Chem. Inf. Comput. Sci. 41 (2000), pp. 186–195.
  • J. Verma, V.M. Khedkar, and E.C. Coutinho, 3D-QSAR in drug design – A review, Curr. Top. Med. Chem. 10 (2010), pp. 95–115.
  • S. Kamath and J.K. Buolamwini, Receptor-guided alignment-based comparative 3D-QSAR studies of benzylidenemalonitriletyrphostins as EGFR and HER-2 kinase inhibitors, J. Med. Chem. 46 (2003), pp. 4657–4668.
  • E. Pourbasheer and S. Shokouhi, Tabar, V.H. Masand, R. Aalizadeh, and M.R. Ganjali, 3D-QSAR and docking studies on adenosine A2A receptor antagonists by the CoMFA method, SAR QSAR Environ. Res. 26 (2015), pp. 461–477.
  • R.D. Cramer, D.E. Patterson, and J.D. Bunce, Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier protein, J. Am. Chem. Soc. 110 (1988), pp. 5959–5967.
  • G. Klebe, U. Abraham, and T. Mietzner, Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity, J. Med. Chem. 37 (1994), pp. 4130–4146.
  • A.K. Halder, A. Saha, and T. Jha, The role of 3D pharmacophore mapping based virtual screening for identification of novel anticancer agents: An overview, Curr. Top. Med. Chem. 13 (2013), pp. 1098–1126.
  • S. Ajmani, K. Jadhav, and S.A. Kulkarni, Three-dimensional QSAR using the k-nearest neighbor method and its interpretation, J. Chem. Inf. Model. 46 (2006), pp. 24–31.
  • R.D. Cramer, TopomerCoMFA: A design methodology for rapid lead optimization, J. Med. Chem. 16 (2003), pp. 374–388.
  • S. Yu, J. Yuan, J. Shi, X. Ruan, T. Zhang, Y. Wang, and Y. Du, HQSAR and topomerCoMFA for predicting melanocortin-4 receptor binding affinities of trans-4-(4-chlorophenyl) pyrrolidine-3-carboxamides, Chemometr. Intell. Lab. Syst. 146 (2015), pp. 34–41.
  • C. Xu and Y. Ren, Molecular modeling studies of [6,6,5] Tricyclic Fused Oxazolidinones as FXa inhibitors using 3D-QSAR, TopomerCoMFA, molecular docking and molecular dynamics simulations, Bioorg. Med. Chem. Lett. 25 (2015), pp. 4522–4528.
  • M. Dong and Y. Ren, Molecular modeling studies of dihydro-alkyloxy-benzyl-oxopyrimidines (DABOs) as non-nucleoside inhibitors of HIV-1 reverse transcriptase using 3D-QSAR, TopomerCoMFA and molecular docking simulations, RSC Adv. 5 (2015), pp. 13754–13761.
  • E. Pourbasheer, R. Aalizadeh, S.S. Tabar, M.R. Ganjali, P. Norouzi, and J. Shadmanes, 2D and 3D-QSAR study of Hepatitis C Virus NS5B polymerase inhibitors by CoMFA and CoMSIA methods, J. Chem. Inf. Model. 54 (2014), pp. 2902–2914.
  • S.P. Kumar, P.C. Jha, Y.T. Jasrai, and H.A. Pandya, The effect of various atomic partial charge schemes to elucidate consensus activity-correlating molecular regions: A test case of diverse QSAR models, J. Biomol. Struct. Dyn. 34 (2016), pp. 540–559.
  • S.K. Verma and S. Thareja, Molecular docking assisted 3D-QSAR study of benzylidene-2,4-thiazolidinedione derivatives as PTP-1B inhibitors for the management of Type-2 diabetes mellitus, RSC Adv. 6 (2016), pp. 33857–33867.
  • S.S. Bhayye, K. Roy, and A. Saha, Pharmacophore generation, atom-based 3D-QSAR, HQSAR and activity cliff analyses of benzothiazine and deazaxanthine derivatives as dual A2A antagonists/MAO-B inhibitors, SAR QSAR Environ. Res. 27 (2016), pp. 183–202.
  • E. Pourbasheer and R. Aalizadeh, 3D-QSAR and molecular docking study of LRRK2 kinase inhibitors by CoMFA and CoMSIA methods, SAR QSAR Environ. Res. 27 (2016), pp. 385–407.
  • S. Liu, Y. Luo, J. Fu, J. Zhou, and G.Z. Kyzas, Molecular docking and 3D-QSAR studies on the glucocorticoid receptor antagonistic activity of hydroxylated polychlorinated biphenyls, SAR QSAR Environ. Res. 27 (2016), pp. 87–99.
  • P.R. Murumkar, A.C. Shinde, M.K. Sharma, H. Yamaguchi, P.B. Miniyar, and M.R. Yadav, Development of a credible 3D-QSAR CoMSIA model and docking studies for a series of triazoles and tetrazoles containing 11β-HSD1 inhibitors, SAR QSAR Environ. Res. 27 (2016), pp. 265–292.
  • J. Andrades, J. Campanini, D. Vásquez, C. Silvestri, C. Morales, J. Romero, and J. Mella, A combined CoMFA and CoMSIA 3D-QSAR study of benzamide type antibacterial inhibitors of the FtsZ protein in drug-resistant Staphylococcus aureus, SAR QSAR Environ. Res. 26 (2015), pp. 925–942.
  • J. Sainy and R. Sharma, QSAR analysis of thiolactone derivatives using HQSAR, CoMFA and CoMSIA, SAR QSAR Environ. Res. 26 (2015), pp. 873–892.
  • P.R. Murumkar, V.P. Zambre, and M.R. Yadav, Development of predictive pharmacophore model for in silico screening, and 3D QSAR CoMFA and CoMSIA studies for lead optimization, for designing of potent tumor necrosis factor alpha converting enzyme inhibitors, J. Comput. Aided Mol. Des. 24 (2010), pp. 143–156.
  • C. Mondal, A.K. Halder, N. Adhikari, and T. Jha, Structural findings of cinnolines as anti-schizophrenic PDE10A inhibitors through comparative chemometric modelling, Mol. Divers. 18 (2014), pp. 655–671.
  • C. Mondal, A.K. Halder, N. Adhikari, A. Saha, K.D. Saha, S. Gayen, and T. Jha, Comparative validated molecular modeling of p53–HDM2 inhibitors as antiproliferative agents, Eur. J. Med. Chem. 90 (2015), pp. 860–875.
  • S.A. Amin, N. Adhikari, T. Jha, and S. Gayen, Exploring structural requirements of unconventional Knoevenagel-type indole derivatives as cytotoxic agents through comparative QSAR modeling approaches, Can. J. Chem. 94 (2016), pp. 637–644.
  • P. Tosco and T. Balle, Open3DQSAR: A new open-source software aimed at high-throughput chemometric analysis of molecular interaction fields, J. Mol. Model. 17 (2011), pp. 201–208.
  • SYBYL-X 2.0. Tripos, St. Louis, 2015; software available at http://www.certara.com.
  • VLifeMDS 4.4 software, Vlife Sciences Technologies Pvt. Ltd. Pune, India, 2015; software available at http://www.vlifesciences.com.
  • Discovery Studio 3.0 (DS 3.0), Accelrys Inc., San Diego, USA, 2015; software available at http://www.accelrys.com.
  • P. Tosco, T. Balle, and F. Shiri, Open3DALIGN: An open-source software aimed at unsupervised ligand alignment, J. Comput. Aided Mol. Des. 25 (2011), pp. 777–783.
  • S.A. Amin and S. Gayen, Modeling cytotoxic activity of some pyrazolo-triazole hybrids using descriptors calculated from open source tool "PaDEL-descriptor", J. Taibah Univ. Sci. 10 (2016), pp. 896–905.
  • S.A. Amin, N. Adhikari, S. Gayen, and T. Jha, Insight into the structural requirements of theophylline-based aldehyde dehydrogenase 1A1 (ALDH1A1) inhibitors through multi-QSAR modeling and molecular docking approaches, Curr. Drug Design Tech. 13 (2016), pp. 84–100.
  • Protein Data Bank. Available at http://www.rcsb.org/pdb/home/home.do (accessed June 15, 2016).
  • ChemDraw Ultra 8.0, Cambridge Soft Corporation, USA, 2015; software available at http://www.cambridgesoft.com.
  • T.A. Halgren, Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94, J. Comp. Chem. 17 (1996), pp. 490–519.
  • S.D. O’Connor, P.E. Smith, F. Al-Obeidi, and B.M. Pettitt, Quenched molecular dynamics simulations of tuftsin and proposed cyclic analogs, J. Med. Chem. 35 (1992), pp. 2870–2881.
  • N.J. Richmond, P. Willett, and R.D. Clark, Alignment of three-dimensional molecules using an image recognition algorithm, J. Mol. Graph Model. 23 (2004), pp. 199–209.
  • J. Taminau, G. Thijs, and H. De Winter, Pharao: Pharmacophore alignment and optimization, J. Mol. Graph Model. 27 (2008), pp. 161–169.
  • J. Gasteiger and M. Marsili, Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges, Tetrahedron 36 (1980), pp. 3219–3228.
  • M. Pastor, G. Cruciani, and S. Clementi, Smart Region Definition: A new way to improve the predictive ability and interpretability of three-dimensional quantitative structure activity relationships, J. Med. Chem. 40 (1997), pp. 1455–1464.
  • M. Baroni, S. Clementi, G. Cruciani, G. Costantino, and D. Riganelli, Predictive ability of regression models. Part II: Selection of the best predictive PLS model, J. Chemom. 6 (1992), pp. 347–356.
  • V. Centner, D.L. Massart, O.E. de Noord, S. de Jong, B.M. Vandeginste, and C. Sterna, Elimination of uninformative variables for multivariate calibration, Anal. Chem. 68 (1996), pp. 3851–3858.
  • The PyMOL Molecular Graphics System, Version 1.7.0.4, Schrodinger, LLC, USA; software available at http://www.pymol.org.
  • A. Golbraikh and A. Tropsha, Beware of q2!, J. Mol. Graph. Model. 20 (2002), pp. 269–276.
  • V. Consonni, D. Ballabioand, and R. Todeschini, Comments on the definition of the Q2 parameter for QSAR validation, J. Chem. Inf. Model. 49 (2009), pp. 1669–1678.
  • R. Wehrens, H. Putter, and L.M.C. Buydens, The bootstrap: A tutorial, Chemometr. Intell. Lab. Syst. 54 (2000), pp. 35–52.
  • G. Folkers, A. Merz, and D. Rognan, Theory methods and applications, in 3D-QSAR in Drug Design, H. Kubinyi, ed., ESCOM, Leiden, the Netherlands, 1994, pp. 583–618.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.