222
Views
6
CrossRef citations to date
0
Altmetric
Articles

CATALOGIC 301C model – validation and improvement

, , , , , , , , & show all
Pages 511-524 | Received 28 Apr 2017, Accepted 13 Jun 2017, Published online: 21 Jul 2017

References

  • OECD Guideline For Testing Of Chemicals. Available at https://www.oecd-ilibrary.org/docserver/download/9730101e.pdf?expires=1398852577&id=id&accname=guest&checksum=0E048E5367CF333D0B7A7CCFC648B123
  • Chemicals Inspection and Testing Institute, Biodegradation and Bioaccumulation data of existing chemicals based on the CSCL Japan, Chemical Industry Ecology-Toxicology & Information Centre, Tokyo, 1992.
  • S. Dimitrov, G. Dimitrova, T. Pavlov, N. Dimitrova, G. Patlewicz, J. Niemela, and O.G. Mekenyan, A stepwise approach for defining the applicability domain of SAR and QSAR models, J. Chem. Inf. Model. 45 (2005), pp. 839–849.
  • S. Dimitrov, T. Pavlov, G. Veith, and O. Mekenyan, Simulation of chemical metabolism for fate and hazard assessment. I. Approach for simulating metabolism, SAR QSAR Environ Res. 22 (2011), pp. 699–718.
  • S. Dimitrov, T. Pavlov, N. Dimitrova, D. Georgieva, D. Nedelcheva, A. Kesova, R. Vasilev, and O. Mekenyan, Simulation of chemical metabolism for fate and hazard assessment. II. CATALOGIC simulation of abiotic and microbial degradation, SAR QSAR Environ Res. 22 (2011), pp. 719–755.
  • R. Bachofer, F. Lingens, and W. Schafer, Conversion of aniline into pyrocatechol by sp.; Incorporation of Oxygen-18, FEBS Lett. 50 (1975), pp. 288–290.
  • C.M. Chen, Q.Z. Ye, Z.M. Zhu, B.L. Wanner, and C.T. Walsh, Molecular biology of carbon-phosphorus bond cleavage. Cloning and sequencing of the phn (psiD) genes involved in alkyl phosphonate uptake and C-P lyase activity in Escherichia coli B, J. Biol. Chem. 265 (1990), pp. 4461–4471.
  • R.L. Crawford, Pathways of 4-hydroxybenzoate degradation among species of Bacillus, J. Bacteriol. 127 (1976), pp. 204–210.
  • R.E. Cripps, The microbial metabolism of thiophen-2-carboxylate, Biochem. J. 134 (1973), pp. 353–366.
  • A.D. Deshpande, K.G. Baheti, and N.R. Chatterjee, Degradation of beta-lactam antibiotics, Current Science 87 (2004), pp. 1684–1695.
  • M.J.A. Dinglasan, Y. Ye, E.A. Edwards, and S.A. Mabury, Fluorotelomer alcohol biodegradation yields poly- and perfluorinated acids, Environ. Sci. Technol. 38 (2004), pp. 2857–2864.
  • J.E. Dominy Jr, C.R. Simmons, P.A. Karplus, A.M. Gehring, and M.H. Stipanuk, Identification and characterization of bacterial cysteine dioxygenases: A new route of cysteine degradation for eubacteria, J. Bacteriol. 188 (2006), pp. 5561–5569.
  • D.F. Dwyer and J.M. Tiedje, Degradation of ethylene glycol and polyethylene glycols by methanogenic consortia, Appl. Environ. Microbiol. 46 (1983), pp. 185–190.
  • EAWAG-BBD Pathway Prediction System; software available at https://eawag-bbd.ethz.ch/predict/.
  • L. Elsgaard, G. Pojana, T. Miraval, J. Eriksen, and A. Marcomini, Biodegradation of linear alkylbenzene sulfonates in sulfateleached soil mesocosms, Chemosphere, 50 (2003), pp. 929–937.
  • S. Fetzner and F. Lingens, Bacterial dehalogenases: Biochemistry, genetics, and biotechnological application, Microbiol. Rev. 58 (1994), pp. 641–685.
  • K. Fuchs, A. Schreiner, and F. Lingens, Degradation of 2-methyl aniline and chlorinated isomers of 2-methylaniline by Rhodococcus rhodochrous strain CTM, J. Gen. Microbiol. 137 (1991), pp. 2033–2039.
  • K. Furukawa, J.R. Simon, and A.M. Chakrabarty, Common induction and regulation of biphenyl, xylene/toluene, and salicylate catabolism in Pseudomonas paucimobilis, J. Bacteriol. 154 (1983), pp. 1356–1362.
  • E. Grabińska-Sota, Genotoxicity and biodegradation of quaternary ammonium salts in aquatic environments, J. Hazard. Mater. 195 (2011), pp. 182–187.
  • G. Grogan, β-Diketone hydrolases, J. Mole. Catal. B: Enzym. 19–20 (2002), pp. 73–82.
  • J. Havel and W. Reineke, Microbial degradation of chlorinated acetophenones, Appl. Environ. Microbiol. 59 (1993), pp. 2706–2712.
  • S.H. Iram and J.E. Cronan, The beta-oxidation systems of Escherichia coli and Salmonella enterica are not functionally equivalent, J. Bacteriol. 188 (2006), pp. 599–608.
  • F. Junker, J.A. Field, F. Bangerter, K. Ramsteiner, H.P. Kohler, C.L. Joannou, J.R. Mason, T. Leisinger, and A.M. Cook, Oxygenation and spontaneous deamination of 2 aminobenzenesulphonic acid in Alcaligenes sp. strain O-1 with subsequent meta ring cleavage and spontaneous desulphonation to 2-hydroxymuconic acid, Biochem. J. 300 (1994), pp. 429–436.
  • Y.-H. Kim and K.-H. Engesser, Degradation of alkyl ether, aralkyl ether, and dibenzyl ether by Rhodococcus sp. strain DEE5151, isolated from diethyl ether-containing enrichment cultures, Appl. Environ. Microbiol. 70 (2004), pp. 4398–4401.
  • Y.S. Liu, G.G. Ying, A. Shareef, and R.S. Kookana, Biodegradation of three selected benzotriazoles under aerobic and anaerobic conditions, Water Res. 45 (2011), pp. 5005–5014.
  • C.D. Lyons, S. Katz, and R. Bartha, Mechanisms and pathways of aniline elimination from aquatic environments, Appl. Environ. Microbiol. 48 (1984), pp. 491–496.
  • M. Martin, G. Mengs, J. Allende, J. Fernandez, R. Alonso, and E. Ferrer, Characterization of two novel propachlor degradation pathways in two species of soil bacteria, Appl. Environ. Microbiol. 65 (1999), pp. 802–806.
  • W.W. Metcalf and B.L. Wanner, Involvement of the Escherichia coli phn (psiD) gene cluster in assimilation of phosphorus in the form of phosphonates, phosphite, Pi esters and Pi, J. Bacteriol. 173 (1991), pp. 587–600.
  • A.C. Negrete-Raymond, B. Weder, and L.P. Wackett, Catabolism of arylboronic acid by Arthrobacter nicotinovorans strain PBA, Appl. Environ. Microbiol. 69 (2003), pp. 4263–4267.
  • T. Ohshiro and Y. Izumi, Microbial desulfurization of organic sulfur compounds in petroleum, Biosci. Biotechnol. Biochem. 63 (1999), pp. 1–9.
  • P. Poupin, N. Truffaut, B. Combourieu, P. Besse, M. Sancelme, H. Veschambre, and A.M. Delort, Degradation of morpholine by an environmental Mycobacterium strain involves a cytochrome P-450, Appl Environ Microbiol. 64 (1998), pp. 159–165.
  • I. Takase, T. Omori, and Y. Minoda, Microbial degradation products from biphenyl-related compounds, Agric. Biol. Chem. 50 (1986), pp. 681–686.
  • S. Vainberg, K. McClay, H. Masuda, D. Root, C. Condee, G.J. Zylstra, and R.J. Steffan, Biodegradation of ether pollutants by Pseudonocardia sp. strain ENV478, Appl. Environ. Microbiol. 72 (2006), pp. 5218–5224.
  • M.J. van der Werf, H.J. Swarts, and J.A.M. de Bont, Rhoodococcus erythropolis DCL14 contains a novel degradation pathway for limonene, Appl. Environ. Microbiol. 65 (1999), pp. 2092–2102.
  • R.-M. Wittich, H. Wilkes, V. Sinnwell, W. Francke, and P. Fortnagel, Metabolism of dibenzo-p-dioxin by Sphingomonas sp. strain RW1, Appl. Environ. Microbiol. 58 (1999), pp. 1005–1010.
  • S.K. Ainala, S. Ashok, Y. Ko, and S. Park, Glycerol assimilation and production of 1,3-propanediol by Citrobacter amalonaticus Y19, Appl. Microbiol. Biotechnol. 97 (2013), pp. 5001–5011.
  • W. Azmi, R.K. Sani, and U.C. Banerjee, Biodegradation of triphenylmethane dyes, Enzyme Microb. Technol. 22 (1998), pp. 185–191.
  • M.T. Balba, M.R. Khan, and W.C. Evans, The microbial degradation of a sulphanilamide-based herbicide (Asulam), Biochem. Soc. Trans. 7 (1979), pp. 405–407.
  • A. Białk-Bielinska, S. Stolte, M. Matzke, A. Fabianska, J. Maszkowska, M. Kołodziejska, B. Libereka, P. Stepnowski, and J. Kumirska, Hydrolysis of sulphonamides in aqueous solutions, J. Hazard. Mater. 221–222 (2012), pp. 264–774.
  • A. Brenner, I. Mukmenev, A. Abeliovich, and A. Kushmaro, Biodegradability of tetrabromobisphenol A and tribromophenol by activated sludge, Ecotoxicology 15 (2006), pp. 399–402.
  • K.M. Buettner and A.M. Valentine, Bioinorganic chemistry of titanium, Ecotoxicology 112 (2012), pp. 1863–1881.
  • S. Cai, T. Cai, S. Liu, Q. Yang, J. He, L. Chen, and J. Hu, Biodegradation of N-methylpyrrolidone by Paracoccus sp. NMD-4 and its degradation pathway, Int. Biodeterior. Biodeg. 93 (2014), pp. 70–77.
  • D. Catelani, A. Colombi, C. Sorlini, and V. Treccani, Metabolism of quaternary carbon compounds: 2,2-dimethylheptane and tertbutylbenzene, Appl. Environ. Microbiol. 34 (1977), pp. 351–354.
  • M.V. Chaubal, G. Su, E. Spicer, W. Dang, K.E. Branham, J.P. English, and Z. Zhao, In vitro and in vivo degradation studies of a novel linear copolymer of lactide and ethylphosphate, J. Biomater. Sci., Polym. Ed. 14 (2003), pp. 45–46.
  • C.Y. Chen, C.K. Wang, and Y.H. Shih, Microbial degradation of 4-monobrominated diphenyl ether in an aerobic sludge and the DGGE analysis of diversity, J. Biomater. Sci., Polym. Ed. 45 (2010), pp. 379–385.
  • G. Cheng, N. Shapir, M.J. Sadowsky, and L.P. Wackett, Allophanate hydrolase, not urease, functions in bacterial cyanuric acid metabolism, Appl. Environ. Microbiol. 71 (2005), pp. 4437–4445.
  • C. Xiao, J. Ning, H. Yan, X. Sun, and J. Hu, Biodegradation of aniline by a newly isolated Delftia sp. XYJ6, Chin. J. Chem. 17 (2009), pp. 500–505.
  • S.T. Chow and T.L. Ng, The biodegradation of N-methyl-2-pyrrolidone in water by sewage bacteria, Water Res. 17 (1983), pp. 117–118.
  • E.H. Cordes and W.P. Jencks, The mechanism of hydrolysis of Schiff bases derived from aliphatic amines, J. Am. Chem. Soc. 85 (1963), pp. 2843–2848.
  • H. Dobbek, L. Gremer, R. Kiefersauer, R. Huber, and O. Meyer, Catalysis at a dinuclear [CuSMo(==O)OH] cluster in a CO dehydrogenase resolved at 1.1-A resolution, Proc. Natl. Acad. Sci. U.S.A. 99 (2002), pp. 15971–15976.
  • K.M. Docherty, J.K. Dixon, and C.F. Kulpa Jr., Biodegradability of imidazolium and pyridinium ionic liquids by an activated sludge microbial community, Biodegradation 18 (2007), pp. 481–493.
  • K.T. Dutta and S. Harayama, Biodegradation of n-alkylcycloalkanes and n-alkylbenzenes via new pathways in Alcanivorax sp. strain MBIC 4326, Appl. Environ. Microbiol. 67 (2001), pp. 1970–1974.
  • D.M. Eby, Z.M. Beharry, E.D. Coulter, D.M. Kurtz Jr., and E.L. Neidle, Characterization and evolution of anthranilate 1,2-dioxygenase from Acinetobacter sp. strain ADP1, J. Bacteriol. 183 (2001), pp. 109–118.
  • P.F. Fitzpatrick, A.M. Orville, A. Nagpal, and M.P. Valley, Nitroalkane oxidase, a carbanion-forming flavoprotein homologous to acyl-CoA dehydrogenase, Arch. Biochem. Biophys. 433 (2005), pp. 157–165.
  • F.W. Forney and A.J. Markovetz, Subterminal oxidation of aliphatic hydrocarbons, J. Bacteriol. 102 (1970), pp. 281–282.
  • G. Gadda and P.F. Fitzpatrick, Substrate specificity of a nitroalkane-oxidizing enzyme, Arch. Biochem. Biophys. 363 (1999), pp. 309–313.
  • F. Govantes, O. Porrúa, V. García-González, and E. Santero, Atrazine biodegradation in the lab and in the field: Enzymatic activities and gene regulation, Microb. Biotechnol. 2 (2009), pp. 178–185.
  • K.A. Grady, O.S. Pogrebinsky, G.T. Mrachko, L. Xi, D.J. Monticello, and C.H. Squires, Molecular mechanisms of biocatalytic desulfurization of fossil fuels, Nat. Biotechnol. 14 (1996), pp. 1705–1709.
  • H.A. Headlam and P.A. Lay, Spectroscopic characterization of genotoxic chromium(V) peptide complexes: Oxidation of chromium(III) triglycine, tetraglycine and pentaglycine complexes, J. Inorg. Biochem. 162 (2016), pp. 227–237.
  • M.M. Häggblom, Microbial breakdown of halogenated aromatic pesticides and related compounds, FEMS Microbiol. Rev. 9 (1992), pp. 29–71.
  • F. Ingerslev and B. Halling-Sørensen, Biodegradability properties of sulfonamides in activated sludge, Environ. Toxicol. Chem. 19 (2000), pp. 2467–2473.
  • D. Inoue, S. Hara, M. Kashihara, Y. Murai, E. Danzl, K. Sei, S. Tsunoi, M. Fujita, and M. Ike, Degradation of bis(4-hydroxyphenyl)methane (bisphenol F) by Sphingobium yanoikuyae strain FM-2 isolated from river water, Appl. Environ. Microbiol. 74 (2008), pp. 352–358.
  • S. Jadhav, S. Yedurkar, S. Phugare, and J. Jadhav, Biodegradation studies on acid violet 19, a triphenylmethane dye, by Pseudomonas aeruginosa BCH, Clean – Soil, Air, Water 40 (2012), pp. 551–558.
  • D. Janssen, G. Grobben, R. Oldenhuis, and B. Witholt, Degradation of trans-1,2-dichloroethene by mixed and pure cultures of methanotrophic bacteria, Appl. Microbiol. Biotechnol 29 (1988), pp. 392–399.
  • J.P. Kaiser, Y. Feng, and J.M. Bollag, Microbial metabolism of pyridine, quinoline, acridine, and their derivatives under aerobic and anaerobic conditions, Microbiol. Rev. 60 (1996), pp. 483–498.
  • H. Khairy, J.H. Wübbeler, and A. Steinbüchel, Biodegradation of the organic disulfide 4,4'-dithiodibutyric acid by Rhodococcus spp, Appl. Environ. Microbiol 81 (2015), pp. 8294–8306.
  • T. Kido, K. Hashizume, and K. Soda, Purification and properties of nitroalkane oxidase from Fusarium oxysporum, J. Bacteriol. 133 (1978), pp. 53–58.
  • Y.M. Kim, I.H. Nam, K. Murugesan, S. Schmidt, D.E. Crowley, and Y.S. Chang, Biodegradation of diphenyl ether and transformation of selected brominated congeners by Sphingomonas sp. PH-07, Appl. Microbiol. Biotechnol. 77 (2007), pp. 187–194.
  • S. Kottegoda, E. Waligora, and M. Hyman, Metabolism of 2-methylpropene (isobutylene) by the aerobic bacterium Mycobacterium sp. Strain ELW1, Appl. Environ. Microbiol. 81 (2015), pp. 1966–1976.
  • R.A. Leppik, Steroid catechol degradation: Disecoandrostane intermediates accumulated by Pseudomonas transposon mutant strains, J. Gen. Microbiol. 135 (1989), pp. 1979–1988.
  • J. Li, W. Cai, and J. Cai, The characteristics and mechanisms of pyridine biodegradation by Streptomyces sp, J. Hazard. Mater. 165 (2009), pp. 950–954.
  • B.M. McRae, T.M. LaPara, and R.M. Hozalski, Biodegradation of haloacetic acids by bacterial enrichment cultures, Chemosphere 55 (2004), pp. 915–925.
  • I.S. Moreira, C.L. Amorim, M.F. Carvalho, and P.M. Castro, Degradation of difluorobenzenes by the wild strain Labrys portucalensis, Biodegradation 23 (2012), pp. 653–662.
  • A.S. Oberoi, L. Philip, and S.M. Bhallamudi, Biodegradation of various aromatic compounds by enriched bacterial cultures: Part B—nitrogen-, sulfur-, and oxygen-containing heterocyclic aromatic compounds, Appl. Biochem. Biotechnol. 176 (2015), pp. 1746–1769.
  • Y. Ogata, S. Goda, T. Toyama, K. Sei, and M. Ike, Degradation pathway of bisphenol S by Sphingobium fuliginis OMI and removal properties of metabolites by activated sludge,, J. Japan Soc. Water Environ. 38 (2015), pp. 139–147.
  • C.G. Orpin, M. Knight, and W.C. Evans, The bacterial oxidation of N-methylisonicotinate, a photolytic product of Paraquat, Biochem. J. 127 (1972), pp. 833–844.
  • T.R. Patel and D.T. Gibson, Purification and properties of (+)-cis-naphthalene dihydrodiol dehydrogenase of Pseudomonas putida, J. Bacteriol. 119 (1974), pp. 879–888.
  • P. Röger, G. Bär, and S. Lingens, Two novel metabolites in the degradation pathway of isoquinoline by Pseudomonas diminuta 7, FEMS Microbiol. Lett. 129 (1995), pp. 281–286.
  • S. Schmidt, R.M. Wittich, D. Erdmann, H. Wilkes, W. Francke, and P. Fortnagel, Biodegradation of diphenyl ether and its monohalogenated derivatives by Sphingomonas sp. strain SS3, Appl. Environ. Microbiol. 58 (1999), pp. 2744–2750.
  • C.W. Schwietert and J.P. McCue, Coordination compounds in medicinal chemistry, Coord. Chem. Rev. 184 (1999), pp. 67–89.
  • J.L. Seffernick and L.P. Wackett, Ancient evolution and recent evolution converge for the biodegradation of cyanuric acid and related triazines, Appl. Environ. Microbiol. 82 (2016), pp. 1638–1645.
  • J. Seo, Y. Keum, I.K. Cho, and Q.X. Li, Degradation of dibenzothiophene and carbazole by Arthrobacter sp. P1-1, Int. Biodeterior. Biodegrad. 58 (2006), pp. 36–43.
  • B. Singh and K. Singh, Microbial degradation of herbicides, Crit. Rev. Microbiol. 42 (2016), pp. 245–261.
  • K. Uchinashi, T. Misawa, M. Takeo, and S. Negoro, Mutational analysis of the metabolism of 2,6-naphthalenedisulfonate by Pigmentiphaga sp. NDS-2, J. Biosci. Bioeng. 95 (2003), pp. 476–482.
  • B.L. Wanner, Molecular genetics of carbon-phosphorus bond cleavage in bacteria, Biodegradation 5 (1994), pp. 175–184.
  • G.F. White, N.J. Russell, and E.C. Tidswell, Bacterial scission of ether bonds, Microbiol. Rev. 60 (1996), pp. 216–232.
  • M. Yamada, T. Yoshida, and T. Nagasawa, trans-Stilbene degradation by Arthrobacter sp. SL3 cells, Biodegradation 19 (2008), pp. 447–453.
  • Y. Takashi, Y. Takahama, and Y. Yamada, Biodegradation of 2,4,6-Tribromophenol by Ochrobactrum sp. Strain TB01, Biosci. Biotechnol. Biochem. 72 (2008), pp. 1264–1271.
  • C. Zhang, S.V. Malhotra, and A.J. Francis, Toxicity of imidazolium- and pyridinium-based ionic liquids and the co-metabolic degradation of N-ethylpyridinium Tetrafluoroborate, Chemosphere 82 (2011), pp. 1690–1695.
  • National Institute of Technology and Evaluation NITE, Biodegradation and Bioconcentration of the Existing Chemical Substances under the Chemical Substances Control Law. Available at www.nite.go.jp/en/index.html
  • E.J.R. Almeida and C.R. Corso, Comparative study of toxicity of azo dye Procion Red MX-5B following biosorption and biodegradation treatments with the fungi Aspergillus niger and Aspergillus terreus, Chemosphere 112 (2014), pp. 317–322.
  • N. Black and S. Moore, Gauss-Seidel Method, From MathWorld a Wolfram Web Resource, created by Eric W. Weisstein. Available at https://mathworld.wolfram.com/GaussSeidelMethod.html
  • D.W. Marquardt, An algorithm for least squares estimation on nonlinear parameters, J. Soc. Indust. Appl. Math. 11 (1963), pp. 431–441.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.