140
Views
4
CrossRef citations to date
0
Altmetric
Articles

3D-map modelling for the melting points prediction of intumescent flame-retardant coatings

&
Pages 677-689 | Received 28 Jun 2017, Accepted 20 Aug 2017, Published online: 08 Sep 2017

References

  • A.S. Korotkov and N.M. Alexandrov, Structure quantitative map in application for AB2X4 system, Comput. Mat. Sci. 35 (2006), pp. 442–446.
  • L.S. Smith, D.K. Tappin, and M. Aindow, The application of Pettifor structure maps to ternary additions in Nb3Al-based alloys, Scripta Mat. 34 (1996), pp. 227–234.
  • Y. Makino, Structural design of intermetallics: Structural mapping, site preferences of third alloying elements and planar defects, Intermetallics 4 (1996), pp. 11–16.
  • L. Guenee and K. Yvon, Structure stability maps for intermetallic AB5 compounds, J. Alloys Comp. 356–357 (2003), pp. 114–119.
  • Z. Arabasadi, M. Khorasani, S. Akhlaghi, H. Fazilat, U.W. Gedde, M.S. Hedenqvist, and M.E. Shiri, Prediction and optimization of fireproofing properties of intumescent flame retardant coatings using artificial intelligence techniques, Fire Safety J. 61 (2013), pp. 193–199.
  • M. Rahimi-Nasrabadi, R. Akhoondi, S.M. Pourmortazavi, and F. Ahmadi, Predicting adsorption of aromatic compounds by carbon nanotubes based on quantitative structure property relationship principles, J. Molec. Struct. 1099 (2015). pp. 510–515.
  • Y. Xinliang and H. Xianwei, Prediction of glass transition temperatures of polyacrylates from the structures of motion units, J. Theor. Comput. Chem. 15 (2016). 1650011.
  • M. Watkins, N. Sizochenko, B. Rasulev, and J. Leszczynski, Estimation of melting points of large set of persistent organic pollutants utilizing QSPR approach, J. Molec. Model. 22 (2016). DOI: 10.1007/s00894-016-2917-0.
  • F. Gharagheizi, P. Ilani-Kashkouli, M. Sattari, A.H. Mohammadi, D. Ramjugernath, and D. Richon, Development of a quantitative structure–liquid thermal conductivity relationship for pure chemical compounds, Fluid Phase Equil. 355 (2013), pp. 52–80.
  • J.C. Dearden, P. Rotureau, and G. Fayet, QSPR prediction of physico-chemical properties for REACH, SAR QSAR Environ. Res. 24 (2013), pp. 279–318.
  • X. Liu and Z. Liu, Research progress on flash point prediction, J. Chem. Eng. Data 55 (2010), pp. 2943–2950.
  • A.S. Korotkov and V.V. Atuchin, Prediction of refractive index of inorganic compound by chemical formula, Optics Comm. 281 (2008), pp. 2132–2138.
  • A.S. Korotkov and V.V. Atuchin, Accurate prediction of refractive index of inorganic oxides by chemical formula, J. Physics Chem. Solids 71 (2010), pp. 958–964.
  • A.S. Korotkov, Correlation of optical properties of acentric crystals with chemical composition, Optics Comm. 294 (2013), pp. 218–222.
  • H.L. Vandesall, Intumescent coating systems. Their development and chemistry, J. Fire Flamm. 2 (1971), pp. 97–140.
  • C.E. Anderson and D.K. Wauters, A thermodynamic heat transfer model for intumescent systems, Int. J. Eng. Sci. 22 (1984), pp. 881–889.
  • E.A. Charles, J. Dzuik, W.A. Mallow, and J. Buckmaster, Intumescent reaction mechanisms, J. Fire Sci. 3 (1985), pp. 161–194.
  • S. Bourbigot, M. Le Bras, and R. Delobel, Carbonization mechanisms resulting from intumescence association with the ammonium polyphosphate-pentaerythritol fire retardant system, Carbon 31 (1993), pp. 1219–1294.
  • Z. Wang, E. Han, and W. Ke, Influence of nano-LDHs on char formation and fire-resistant properties of flame-retardant coating, Prog. Org. Coatings 53 (2005), pp. 29–37.
  • S.A. Nehanov and V.P. Pimenova, Physico-chemical foaming flame retardants based on ammonium polyphosphate, Pozharovrivobezopasnost 8 (2010), pp. 11–58 [Russian].
  • G. Wang and J. Yang, Thermal degradation study of fire resistive coating containing melamine polyphosphate and dipentaerythritol, Prog. Org. Coatings 72 (2011), pp. 605–611.
  • L. Gao, G. Zheng, Y. Zhou, L. Hu, G. Feng, and Y. Xie, Synergistic effect of expandable graphite, melamine polyphosphate and layered double hydroxide on improving the fire behavior of rosin-based rigid polyurethane foam, Indus. Crops Prod. 50 (2013), pp. 638–647.
  • Y. Xia, F. Jin, Z. Mao, Y. Guan, and A. Zheng, Effects of ammonium polyphosphate to pentaerythritol ratio on composition and properties of carbonaceous foam deriving from intumescent flame-retardant polypropylene, Polymer Degrad. Stability 107 (2014), pp. 64–73.
  • A.S. Korotkov, Melamine/monoammonium phosphate complex as the polyphosphate substitute in flame retardant coatings, J. Fire Sci. 34 (2016), pp. 89–103.
  • F. Laoutid, L. Bonnaud, M. Alexandre, J.-M. Lopez-Cuesta, and P. Dubois, New prospects in flame retardant polymer materials: From fundamentals to nanocomposites, Materials Sci. Eng. 63 (2009), pp. 100–125.
  • Z. Feng and C. Yunfei, Experimental study on heat transfer of intumescent fire retardant polypropylene materials, J. Macromol. Sci. B Phys. 54 (2015), pp. 112–125.
  • S.A. Nehanov, V.P. Pimenova, and L.I. Nateykina, Effect of excipients on the foam-coke structure based on ammonium polyphosphate, Pozharovrivobezopasnost 7 (2009), pp. 51–58.
  • G.F. Levchik, A.F. Selevich, S.V. Levchik, and A.I. Lesnikovich, Thermal behaviour of ammonium polyphosphate—inorganic compound mixtures. Part 1. Talc, Thermochim. Acta 239 (1994), pp. 41–49.
  • G.F. Levchik, S.V. Levchik, P.D. Sachok, A.F. Selevich, A.S. Lyakhov, and A.I. Lesnikovich, Thermal behaviour of ammonium polyphosphate-inorganic compound mixtures. Part 2. Manganese dioxide, Thermochim. Acta 257 (1995), pp. 117–125.
  • A. Castrovinci, G. Camino, C. Drevelle, S. Duquesne, C. Magniez, and M. Vouters, Ammonium polyphosphate–aluminum trihydroxide antagonism in fire retarded butadiene–styrene block copolymer, Eur. Polymer J. 41 (2005), pp. 2023–2033.
  • P.J. Davies, A.R. Horrocks, and A. Alderson, The sensitisation of thermal decomposition of ammonium polyphosphate by selected metal ions and their potential for improved cotton fabric flame retardancy, Polymer Degrad. Stability 88 (2005), pp. 114–122.
  • G. Li, J. Yang, T. He, Y. Wu, and G. Liang, An investigation of the thermal degradation of the intumescent coating containing MoO3 and Fe2O3, Surface Coatings Technol. 202 (2008), pp. 3121–3128.
  • Z. You, L. Xiu, W. Fang, and H. Jian-Wei, Effect of metal oxides on fire resistance and char formation of intumescent flame retardant coating, J. Inorg. Mat. 29 (2014), pp. 972–978.
  • J.C. Davis, Statistics and Data Analysis in Geology, USA: John Wiley & Sons, Inc. Second edition, 1986.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.