234
Views
23
CrossRef citations to date
0
Altmetric
Articles

Hydroxyethylamine derivatives as HIV-1 protease inhibitors: a predictive QSAR modelling study based on Monte Carlo optimization

, ORCID Icon, ORCID Icon, , & ORCID Icon
Pages 973-990 | Received 18 Aug 2017, Accepted 29 Sep 2017, Published online: 26 Oct 2017

References

  • M.D. Sepkowitz, AIDS–the first 20 years, N. Engl. J. Med. 344 (2001), pp. 1764–1772.
  • R.C. Gallo and L. Montagnier, The discovery of HIV as the cause of AIDS, N. Engl. J. Med. 349 (2003), pp. 2283–2285.
  • M. Lenassi, G. Cagney, M. Liao, T. Vaupotic, K. Bartholomeeusen, Y. Cheng, N.J. Krogan, A. Plemenitas, and B.M. Peterlin, HIV Nef is secreted in exosomes and triggers apoptosis in bystander CD4+ T cells, Traffic 11 (2010), pp. 110–122.
  • P.B. Gilbert, I.W. McKeague, G. Eisen, C. Mullins, A. Gueve-NDiave, S. Mboup, and P.J. Kanki, Comparison of HIV-1 and HIV-2 infectivity from a prospective cohort study in Senegal, Stat. Med. 22 (2003), pp. 573–593.
  • F. Yu, Y. Hao, H. Zhao, J. Xiao, N. Han, Y. Zhang, G. Dai, X. Chong, H. Zeng, and F. Zhang, Distinct mitochondrial disturbance in CD4+T and CD8+T cells from HIV-infected patients, J. Acquir. Immune Defic. Syndr. 74 (2017), pp. 206–212.
  • D.C. Douek, M. Roederer, and R.A. Koup, Emerging concepts in the immunopathogenesis of AIDS, Annu. Rev. Med. 60 (2009), pp. 471–484.
  • A.R. Lifson, Do alternate modes for transmission of human immunodeficiency virus exist? A review, JAMA 259 (1988), pp. 1353–1356.
  • S. Gayen, B. Debnath, S. Samanta, and T. Jha, QSAR study on some anti-HIV HEPT analogues using physicochemical and topological parameters, Bioorg. Med. Chem. 15 (2004), pp. 1493–1503.
  • B. Gazzard and G. Moyle, revision to the British HIV Association Guidelines for antiretroviral treatment of HIV seropositive individuals. BHIVA Guidelines Writing Committee, Lancet 352(1998) (1998), pp. 314–316.
  • C.J. Carpenter, M.A. Fischl, S.M. Hammer, M.S. Hirsch, D.M. Jacobsen, D.A. Katzenstein, J.S. Montaner, D.D. Richman, M.S. Saag, R.T. Schooley, M.A. Thompson, S. Vella, P.G. Yeni, and P.A. Volberding, Antiretroviral therapy for HIV infection in 1998: Updated recommendations of the International AIDS Society-USA Panel, JAMA 280 (1998), pp. 78–86.
  • A.R. Pazare, Evolution of anti-retroviral therapy: Multiple pills to fixed drug combinations, J. Assoc. Physicians India. 63 (2015), pp. 11–13.
  • C.T. Su, W.L. Ling, W.H. Lua, Y.X. Haw, and S.K. Gan, Structural analyses of 2015-updated drug-resistant mutations in HIV-1 protease: An implication of protease inhibitor cross-resistance, BMC Bioinformatics 17 (2016), p. 500.
  • M.C. Graves, J.J. Lim, E.P. Heimer, and R.A. Kramer, An 11-kDa form of human immunodeficiency virus protease expressed in Escherichia coli is sufficient for enzymatic activity, Proc. Natl. Acad. Sci. USA 85 (1988), pp. 2449–2453.
  • S.F. Le Grice, J. Mills, and J. Mous, Active site mutagenesis of the AIDS virus protease and its alleviation by trans complementation, EMBO J. 7 (1988), pp. 2547–2553.
  • N.E. Kohl, E.A. Emini, W.A. Schleif, L.J. Davis, J.C. Heimbach, R.A. Dixon, E.M. Scolnick, and I.S. Sigal, Active human immunodeficiency virus protease is required for viral infectivity, Proc. Natl. Acad. Sci. USA 85 (1988), pp. 4686–4690.
  • S.M. Hammer, J.J. Eron Jr, P. Reiss, R.T. Schooley, M.A. Thompson, S. Walmsley, P. Cahn, M.A. Fischl, J.M. Gatell, M.S. Hirsch, D.M. Jacobsen, J.S. Montaner, D.D. Richman, P.G. Yeni, and P.A. Volberding, Antiretroviral treatment of adult HIV infection: 2008 recommendations of the International AIDS Society-USA panel, JAMA 300 (2008), pp. 555–570.
  • M.K. Parai, D.J. Huggins, H. Cao, M.N.L. Nalam, A. Ali, C.A. Schiffer, B. Tidor, and T.M. Rana, Design, synthesis, and biological and structural evaluations of novel HIV-1 protease inhibitors to combat drug resistance, J. Med. Chem. 55 (2012), pp. 6328–6341.
  • A. Ali, G.S.K. Reddy, M.N.L. Nalam, S.G. Anjum, H. Cao, C.A. Schiffer, and T.M. Rana, Structure-based design, synthesis, and structure-activity relationship studies of HIV-1 protease inhibitors incorporating phenyloxazolidinones, J. Med. Chem. 53 (2010), pp. 7699–7708.
  • M.D. Altman, A. Ali, G.S.K. Reddy, M.N.L. Nalam, S.G. Anjum, H. Cao, S. Chellappan, V. Kairys, M.X. Fernandes, M.K. Gilson, C.A. Schiffer, T.M. Rana, and B. Tidor, HIV-1 protease inhibitors from inverse design in the substrate envelope exhibit subnanomolar binding to drug-resistant variants, J. Am. Chem. Soc. 130 (2008), pp. 6099–6113.
  • G.S.K. Reddy, A. Ali, M.N.L. Nalam, S.G. Anjum, H. Cao, R.S. Nathans, C.A. Schiffer, and T.M. Rana, Design and synthesis of HIV-1 protease inhibitors incorporating oxazolidinones as P2/P2′ ligands in pseudosymmetric dipeptide isosteres, J. Med. Chem. 50 (2007), pp. 4316–4328.
  • A. Ali, G.S. Reddy, H. Cao, S.G. Anjum, M.N. Nalam, C.A. Schiffer, and T.M. Rana, Discovery of HIV-1 protease inhibitors with picomolar affinities incorporating N-aryl-oxazolidinone-5-carboxamides as novel P2 ligands, J. Med. Chem. 49 (2006), pp. 7342–7356.
  • S.A. Amin, N. Adhikari, S. Gayen, and T. Jha, An integrated ligand-based modelling approach to explore the structure-property relationships of influenza endonuclease inhibitors, Struct. Chem. (2017), in press. doi: 10.1007/s11224-017-0933-z.
  • S.A. Amin, S. Bhargava, N. Adhikari, S. Gayen, and T. Jha, Exploring pyrazolo[3,4-d]pyrimidine phosphodiesterase 1 (PDE1) inhibitors: A predictive approach combining comparative validated multiple molecular modeling techniques, J. Biomol. Struct. Dyn. (2017), in press. doi: 10.1080/07391102.2017.1288659.
  • S.A. Amin, N. Adhikari, T. Jha, and S. Gayen, First molecular modeling report on novel arylpyrimidine kynurenine monooxygenase inhibitors through multi- QSAR analysis against Huntington's disease: A proposal to chemists!, Bioorg. Med. Chem. Lett. 26 (2016), pp. 5712–5718.
  • S.A. Amin, N. Adhikari, S. Gayen, and T. Jha, Insight into the structural requirements of theophylline-based aldehyde dehydrogenase 1A1 (ALDH1A1) inhibitors through multi-QSAR modelling and molecular docking approaches, Curr. Drug Descov. Tech. 13 (2016), pp. 84–100.
  • S.A. Amin, N. Adhikari, T. Jha, and S. Gayen, Exploring structural requirements of unconventional Knoevenagel-type indole derivatives as anticancer agents through comparative QSAR modelling approaches, Can. J. Chem. 94 (2016), pp. 637–644.
  • A.P. Toropova, A.A. Toropov, E. Benfenati, G. Gini, D. Leszczynska, and J. Leszczynski, CORAL: QSPR models for solubility of [C60] and [C70] fullerene derivatives, Mol. Divers. 15 (2011), pp. 249–256.
  • A.P. Toropova, A.A. Toropov, E. Benfenati, and G. Gini, QSAR modelling toxicity toward rats of inorganic substances by means of CORAL, Cent. Eur. J. Chem. 9 (2011), pp. 75–85.
  • A.P. Toropova, A.A. Toropov, R.G. Diaza, E. Benfenati, and G. Gini, Analysis of the co-evolutions of correlations as a tool for QSAR-modeling of carcinogenicity: An unexpected good prediction based on a model that seems untrustworthy, Cent. Eur. J. Chem. 9 (2011), pp. 165–174.
  • A.P. Toropova, A.A. Toropov, E. Benfenati, G. Gini, D. Leszczynska, and J. Leszczynski, QSAR modeling of anxiolytic activity taking into account the presence of keto- and enol-tautomers by balance of correlations with ideal slopes, Cent. Eur. J. Chem. 9 (2011), pp. 846–854.
  • Chem 3D Pro Version 8.0 and Chem Draw Ultra Version 8.0, software programs developed by Cambridge Soft Corporation, USA, 2015; software available at http://www.cambridgesoft.com.
  • S.A. Amin, N. Adhikari, S. Gayen, and T. Jha, First report on the structural exploration and prediction of new BPTES analogs as glutaminase inhibitors, J. Mol. Struct. 1143 (2017), pp. 49–64.
  • A.K. Halder, S.A. Amin, T. Jha, and S. Gayen, Insight into the structural requirements of pyrimidine-based phosphodiesterase 10A (PDE10A) inhibitors by multiple validated 3D QSAR approaches, SAR QSAR Environ. Res. 28 (2017), pp. 253–273.
  • M. Awasthi, S.A. Amin, V. Shukla, S. Jain, U.K. Patil, and S. Gayen, Structural requirements of some derivatives based on natural alkaloid lycorine for their dengue inhibitory activity to accelerate dengue drug discovery efforts, Indian J. Nat. Prod. Res. 7 (2016), pp. 221–228.
  • S.A. Amin, N. Adhikari, S. Bhargava, T. Jha, and S. Gayen, Designing potential antitrypanosomal thiazol-2-ethylamines through predictive regression based and classification based QSAR analyses, Curr. Drug Discov. Tech. 14 (2017), pp. 39–52.
  • CORAL software, IRCCS, Milan, Italy, 2017; available at: http://www.insilico.eu/CORAL/.
  • L.M.A. Mullen, P.R. Duchowicz, and E.A. Castro, QSAR treatment on a new class of triphenylmethyl-containing compounds as potent anticancer agents, Chemometr. Intell Lab. 107 (2011), pp. 269–275.
  • A. Kumar and S. Chauhan, Monte Carlo method based QSAR modelling of natural lipase inhibitors using hybrid optimal descriptors, SAR QSAR Environ. Res. 28 (2017), pp. 179–197.
  • V. Prachayasittikul, A. Worachartcheewan, A.P. Toropova, A.A. Toropov, N. Schaduangrat, V. Prachayasittikul, and C. Nantasenamat, Large-scale classification of P-glycoprotein inhibitors using SMILES-based descriptors, SAR QSAR Environ. Res. 28 (2017), pp. 1–16.
  • J.B. Veselinovic, G.M. Nikolic, N.V. Trutic, J.V. Zivkovic, and A.M. Veselinovic, Monte Carlo QSAR models for predicting organophosphate inhibition of acetylcholinesterase, SAR QSAR Environ. Res. 26 (2015), pp. 449–460.
  • S. Begum and P.G.R. Achary, Simplified molecular input line entry system-based: QSAR modelling for MAP kinase-interacting protein kinase (MNK1), SAR QSAR Environ. Res. 26 (2015), pp. 343–361.
  • P.G.R. Achary, Simplified molecular input line entry system-based optimal descriptors: QSAR modelling for voltage-gated potassium channel subunit Kv7.2, SAR QSAR Environ. Res. 25 (2014), pp. 73–90.
  • N.M. O’Boyle, M. Banck, C.A. James, C. Morley, T. Vandermeersch, and G.R. Hutchison, Open babel: An open chemical toolbox, J. Cheminform. 33 (2011), pp. 33.
  • A.A. Toropov, A.P. Toropova, and E. Benfenati, SMILES-based optimal descriptors: QSAR modeling of carcinogenicity by balance of correlations with ideal slopes, Eur. J. Med. Chem. 45 (2010), pp. 3581–3587.
  • A.P. Toropova, A.A. Toropov, and E. Benfenati, A quasi-QSPR modelling for the photocatalytic decolourization rate constants and cellular viability (CV%) of nanoparticles by CORAL, SAR QSAR Environ. Res. 26 (2015), pp. 29–40.
  • A.A. Toropov, A.P. Toropova, and E. Benfenati, QSPR modeling for enthalpies of formation of organometallic compounds by means of SMILES-based optimal descriptors, Chem. Phys. Lett. 461 (2008), pp. 343–347.
  • P. Ambure and K. Roy, Understanding the structural requirements of cyclic sulfone hydroxyethylamines as hBACE1 inhibitors against Aβ plaques in Alzheimer's disease: A predictive QSAR approach, RSC Adv. 6 (2016), pp. 28171–28186.
  • K. Roy, R.N. Das, P. Ambure, and R.B. Aher, Be aware of error measures: Further studies on validation of predictive QSAR models, Chemom. Intell. Lab. Syst. 152 (2016), pp. 18–33.
  • XternalValidationPlus v1.2, Jadavpur University, Kolkata, 2016; available at: http://teqip.jdvu.ac.in/QSAR_Tools/
  • T.I. Netzeva, A.P. Worth, T. Aldenberg, R. Benjamin, M.T.D. Cronin, P. Gramatica, J.S. Jaworska, S. Kahn, G. Klopman, C.A. Marchant, G. Myatt, N. Nikolova-Jeliazkova, G.Y. Patlewicz, R. Perkins, D.W. Roberts, T.W. Schultz, D.T. Stanton, J.J.M. van de Sandt, W. Tong, G. Veith, and C. Yang, Current status of methods for defining the applicability domain of (quantitative) structure-activity relationships. The report and recommendations of ECVAM Workshop 52, Altern. Lab. Anim. 33 (2005), pp. 155–173.
  • K. Roy, S. Kar, and P. Ambure, On a simple approach for determining applicability domain of QSAR models, Chemom. Intell. Lab. Syst. 145 (2015), pp. 22–29.
  • M.A. Islam and T.S. Pillay, Simplified molecular input line entry system-based descriptors in QSAR modeling for HIV-protease inhibitors, Chemometr. Intell. Lab. Syst. 153 (2016), pp. 67–74.
  • A.P. Toropova, A.A. Toropov, J.B. Veselinović, F.N. Miljković, and A.M. Veselinović, QSAR models for HEPT derivates as NNRTI inhibitors based on Monte Carlo method, Eur. J. Med. Chem. 77 (2014), pp. 298–305.
  • R.F. Alamdari, A. Mani-Varnosfaderani, M. Asadollahi-Baboli, and A. Khalafi-Nezhad, Monte Carlo sampling and multivariate adaptive regression splines as tools for QSAR modelling of HIV-1 reverse transcriptase inhibitors, SAR QSAR Env. Res. 23 (2012), pp. 665–682.
  • A.A. Toropov, A.P. Toropova, I. Raska Jr, E. Benfenati, and G. Gini, Development of QSAR models for predicting anti-HIV-1 activity using the Monte Carlo method, Cent. Eur. J. Chem. 11 (2013), pp. 371–380.
  • J. Veselinović, A. Veselinović, A. Toropov, A. Toropova, I. Damnjanović, and G. Nikolić, Monte Carlo method based QSAR modeling of coumarin derivates as potent HIV-1 integrase inhibitors and molecular docking studies of selected 4-phenyl hydroxycoumarins, Acta Fac. Medicae Naissensis 31 (2014), pp. 95–103.
  • A.K. Halder and T. Jha, Validated predictive QSAR modeling of N-aryl-oxazolidinone-5-carboxamides for anti-HIV protease activity, Bioorganic Med. Chem. Lett. 20 (2010), pp. 6082–6087.
  • M.H. Fatemi, A. Heidari, and S. Gharaghani, QSAR prediction of HIV-1 protease inhibitory activities using docking derived molecular descriptors, J. Theor. Biol. 369 (2015), pp. 13–22.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.