376
Views
22
CrossRef citations to date
0
Altmetric
Articles

Multi-targeted directed ligands for Alzheimer’s disease: design of novel lead coumarin conjugates

, , &
Pages 231-255 | Received 30 Oct 2017, Accepted 01 Jan 2018, Published online: 01 Feb 2018

References

  • M. Prince, A. Wimo, M. Guerchet, G.-C. Ali, Y.-T. Wu, M. Prina. World Alzheimer report 2015. The global impact of dementia, Alzheimer’s Disease International, London, UK. Available at http://www.worldalzreport2015.org/.
  • L.E. Hebert, J. Weuve, P.A. Scherr, D.A. Evans. Alzheimer disease in the United States (2010–2050) estimated using the 2010 census, Neurology 7(2013). pp. 1778–1783.
  • E.K. Perry, R.H. Perry, C.J. Smith, D. Purohit, J. Bonham, D.J. Dick, J.M. Candy, J.A. Edwardson, and A. Fairbairn, Cholinergic receptors in cognitive disorders, Can. J. Neurol. Sci. 13 (1986), pp. 521–527.
  • H.C. Fibiger, Cholinergic mechanisms in learning, memory and dementia: A review of recent evidence, Trends Neurosci. 14 (1991), pp. 220–223.
  • D. Paterson and A. Nordberg, Neuronal nicotinic receptors in the human brain, Prog. Neurobiol. 61 (2000), pp. 75–111.
  • E. Perry, C. Martin-Ruiz, M. Lee, M. Griffiths, M. Johnson, M. Piggott, V. Haroutunian, J.D. Buxbaum, J. Nasland, K. Davis, C. Gotti, F. Clementi, S. Tzartos, O. Cohen, H. Soreq, E. Jaros, R. Perry, C. Ballard, I. McKeith, and J. Court, Nicotinic receptor subtypes in human brain ageing, Alzheimer and Lewy body diseases, Eur. J. Pharmacol. 393 (2000), pp. 215–222.
  • R.T. Mott and C.M. Hulette, Neuropathology of Alzheimer’s disease, Neuroimaging Clin. N. Am. 15 (2005), pp. 755–765, ix.
  • F. Assal and J.L. Cummings, Neuropsychiatric symptoms in the dementias, Curr. Opin. Neurol. 15 (2002), pp. 445–450.
  • T. Erkinjuntti, Treatment options: The latest evidence with galantamine (Reminyl), J. Neurol. Sci. 203–204 (2002), pp. 125–130.
  • T. Saito, Y. Takaki, N. Iwata, J. Trojanowski, and T.C. Saido, Alzheimer’s disease, neuropeptides, neuropeptidase, and amyloid-beta peptide metabolism, Sci. Aging Knowledge Environ. 2003 (2003), p. Pe1.
  • P. Kasa, Z. Rakonczay, and K. Gulya, The cholinergic system in Alzheimer’s disease, Prog. Neurobiol. 52 (1997), pp. 511–535.
  • S.K. Mencher and L.G. Wang, Promiscuous drugs compared to selective drugs (promiscuity can be a virtue), BMC Clin. Pharmacol. 5 (2005), p. 3.
  • F. Li, J.J. Wu, J. Wang, X.L. Yang, P. Cai, Q.H. Liu, L.Y. Kong, and X.B. Wang, Synthesis and pharmacological evaluation of novel chromone derivatives as balanced multifunctional agents against Alzheimer’s disease, Bioorg. Med. Chem. 25 (2017), pp. 3815–3826.
  • S.A. Nisha and K.P. Devi, Gelidiella acerosa protects against Abeta 25–35-induced toxicity and memory impairment in Swiss Albino mice: An in vivo report, Pharm. Biol. 55 (2017), pp. 1423–1435.
  • P. Riederer, W. Danielczyk, and E. Grunblatt, Monoamine oxidase-B inhibition in Alzheimer’s disease, Neurotoxicology 25 (2004), pp. 271–277.
  • D. Kim, S.H. Baik, S. Kang, S.W. Cho, J. Bae, M.Y. Cha, M.J. Sailor, I. Mook-Jung, and K.H. Ahn, Close correlation of monoamine oxidase activity with progress of Alzheimer’s disease in mice, observed by in vivo two-photon imaging, ACS Cent. Sci. 2 (2016), pp. 967–975.
  • N.T. Tzvetkov and L. Antonov, Subnanomolar indazole-5-carboxamide inhibitors of monoamine oxidase B (MAO-B) continued: Indications of iron binding, experimental evidence for optimised solubility and brain penetration, J. Enzyme Inhib. Med. Chem. 32 (2017), pp. 960–967.
  • R. Harada, A. Ishiki, H. Kai, N. Sato, K. Furukawa, S. Furumoto, T. Tago, N. Tomita, S. Watanuki, K. Hiraoka, Y. Ishikawa, Y. Funaki, T. Nakamura, T. Yoshikawa, R. Iwata, M. Tashiro, H. Sasano, T. Kitamoto, K. Yanai, H. Arai, Y. Kudo, and N. Okamura, Correlations of 18F-THK5351 PET with post-mortem burden of tau and astrogliosis in Alzheimer’s disease, J. Nucl. Med. 117 (2017), p. 197426.
  • C. Binda, J. Wang, L. Pisani, C. Caccia, A. Carotti, P. Salvati, D.E. Edmondson, and A. Mattevi, Structures of human monoamine oxidase B complexes with selective noncovalent inhibitors: Safinamide and coumarin analogs, J. Med. Chem. 50 (2007), pp. 5848–5852.
  • Protein Data Bank, 2V61 Structure of human MAO B in complex with the selective inhibitor 7-(3- chlorobenzyloxy)-4-(methylamino)methyl-coumarin. Available at http://www.rcsb.org/pdb/explore/explore.do?structureId=2V61.
  • J. Cheung, M.J. Rudolph, F. Burshteyn, M.S. Cassidy, E.N. Gary, J. Love, M.C. Franklin, and J.J. Height, Structures of human acetylcholinesterase in complex with pharmacologically important ligands, J. Med. Chem. 55 (2012), pp. 10282–10286.
  • Protein Data Bank, 4EY7 Crystal structure of recombinant human acetylcholinesterase in complex with Donepezil. Available at http://www.rcsb.org/pdb/explore/explore.do?structureId=4EY7.
  • N.C. Inestrosa, A. Alvarez, C.A. Perez, R.D. Moreno, M. Vicente, C. Linker, O.I. Casanueva, C. Soto, and J. Garrido, Acetylcholinesterase accelerates assembly of amyloid-beta-peptides into Alzheimer’s fibrils: Possible role of the peripheral site of the enzyme, Neuron 16 (1996), pp. 881–891.
  • C. Garino, T. Tomita, N. Pietrancosta, Y. Laras, R. Rosas, G. Herbette, B. Maigret, G. Quelever, T. Iwatsubo, and J.L. Kraus, Naphthyl and coumarinyl biarylpiperazine derivatives as highly potent human beta-secretase inhibitors. Design, synthesis, and enzymatic BACE-1 and cell assays, J. Med. Chem. 49 (2006), pp. 4275–4285.
  • L. Yang, Q. Yang, K. Zhang, Y.J. Li, Y.M. Wu, S.B. Liu, L.H. Zheng, and M.G. Zhao, Neuroprotective effects of daphnetin against NMDA receptor-mediated excitotoxicity, Molecules 19 (2014), pp. 14542–14555.
  • E.C. Pereira, D.L. Lucetti, J.M. Barbosa-Filho, E.M. de Brito, V.S. Monteiro, M.C. Patrocinio, R.R. de Moura, L.K. Leal, D.S. Macedo, F.C. de Sousa, G.S. de Barros Viana, and S.M. Vasconcelos, Coumarin effects on amino acid levels in mice prefrontal cortex and hippocampus, Neurosci. Lett. 454 (2009), pp. 139–142.
  • A. Hornick, A. Lieb, N.P. Vo, J.M. Rollinger, H. Stuppner, and H. Prast, The coumarin scopoletin potentiates acetylcholine release from synaptosomes, amplifies hippocampal long-term potentiation and ameliorates anticholinergic- and age-impaired memory, Neuroscience 197 (2011), pp. 280–292.
  • D. Oehlrich, F.J. Rombouts, D. Berthelot, F.P. Bischoff, M.A. De Cleyn, L. Jaroskova, G. Macdonald, M. Mercken, M. Surkyn, A.A. Trabanco, G. Tresadern, S. Van Brandt, A.I. Velter, T. Wu, and H.J. Gijsen, Design and synthesis of bicyclic heterocycles as potent gamma-secretase modulators, Bioorg. Med. Chem. Lett. 23 (2013), pp. 4794–4800.
  • J. Close, R. Heidebrecht Jr, J. Hendrix, C. Li, B. Munoz, L. Surdi, S. Kattar, P. Tempest, P. Moses, X. Geng, B. Hughes, N. Smotrov, C. Moxham, J. Chapnick, I. Kariv, G. Nikov, J.E. Burke, S. Deshmukh, V. Jeliazkova-Mecheva, J.K. Leach, D. Diaz, L. Xu, Z. Yang, G. Kwei, L. Moy, S. Shah, F. Tanga, C. Kenefic, D. Savage, M. Shearman, R.G. Ball, M.J. McNevin, A. Markarewicz, and T. Miller, Lead optimization of 4,4-biaryl piperidine amides as gamma-secretase inhibitors, Bioorg. Med. Chem. Lett. 22 (2012), pp. 3203–3207.
  • M.D. McBriar, J.W. Clader, I. Chu, R.A. Del Vecchio, L. Favreau, W.J. Greenlee, L.A. Hyde, A.A. Nomeir, E.M. Parker, D.A. Pissarnitski, L. Song, L. Zhang, and Z. Zhao, Discovery of amide and heteroaryl isosteres as carbamate replacements in a series of orally active gamma-secretase inhibitors, Bioorg. Med. Chem. Lett. 18 (2008), pp. 215–219.
  • H. Li, T. Asberom, T.A. Bara, J.W. Clader, W.J. Greenlee, H.B. Josien, M.D. McBriar, A. Nomeir, D.A. Pissarnitski, M. Rajagopalan, R. Xu, Z. Zhao, L. Song, and L. Zhang, Discovery of 2,4,6-trisubstituted N-arylsulfonyl piperidines as gamma-secretase inhibitors, Bioorg. Med. Chem. Lett. 17 (2007), pp. 6290–6294.
  • H. Josien, T. Bara, M. Rajagopalan, T. Asberom, J.W. Clader, L. Favreau, W.J. Greenlee, L.A. Hyde, A.A. Nomeir, E.M. Parker, D.A. Pissarnitski, L. Song, G.T. Wong, L. Zhang, Q. Zhang, and Z. Zhao, Small conformationally restricted piperidine N-arylsulfonamides as orally active gamma-secretase inhibitors, Bioorg. Med. Chem. Lett. 17 (2007), pp. 5330–5335.
  • Y.E. Kwon, J.Y. Park, K.T. No, J.H. Shin, S.K. Lee, J.S. Eun, J.H. Yang, T.Y. Shin, D.K. Kim, B.S. Chae, J.Y. Leem, and K.H. Kim, Synthesis, in vitro assay, and molecular modeling of new piperidine derivatives having dual inhibitory potency against acetylcholinesterase and Abeta1-42 aggregation for Alzheimer’s disease therapeutics, Bioorg. Med. Chem. 15 (2007), pp. 6596–6607.
  • H.R. Girisha, J.N. Narendra Sharath Chandra, S. Boppana, M. Malviya, C.T. Sadashiva, and K.S. Rangappa, Active site directed docking studies: Synthesis and pharmacological evaluation of cis-2,6-dimethyl piperidine sulfonamides as inhibitors of acetylcholinesterase, Eur. J. Med. Chem. 44 (2009), pp. 4057–4062.
  • F.C. Meng, F. Mao, W.J. Shan, F. Qin, L. Huang, and X.S. Li, Design, synthesis, and evaluation of indanone derivatives as acetylcholinesterase inhibitors and metal-chelating agents, Bioorg. Med. Chem. Lett. 22 (2012), pp. 4462–4466.
  • M.R. Jones, E.L. Service, J.R. Thompson, M.C. Wang, I.J. Kimsey, A.S. DeToma, A. Ramamoorthy, M.H. Lim, T. Storr, Dual-function triazole-pyridine derivatives as inhibitors of metal-induced amyloid-beta aggregation, Metallomics 4 (2012), pp. 910–920.
  • B. Klajnert, T. Wasiak, M. Ionov, M. Fernandez-Villamarin, A. Sousa-Herves, J. Correa, R. Riguera, and E. Fernandez-Megia, Dendrimers reduce toxicity of Aβ 1–28 peptide during aggregation and accelerate fibril formation, Nanomedicine 8 (2012), pp. 1372–1378.
  • M. Malviya, Y.C. Kumar, R.B. Mythri, C. Venkateshappa, M.N. Subhash, and K.S. Rangappa, Muscarinic receptor 1 agonist activity of novel N-aryl carboxamide substituted 3-morpholino arecoline derivatives in Alzheimer’s presenile dementia models, Bioorg. Med. Chem. 17 (2009), pp. 5526–5534.
  • Y.C. Kumar, M. Malviya, J.N. Chandra, C.T. Sadashiva, C.S. Kumar, S.B. Prasad, D.S. Prasanna, M.N. Subhash, and K.S. Rangappa, Effect of novel N-aryl sulfonamide substituted 3-morpholino arecoline derivatives as muscarinic receptor 1 agonists in Alzheimer’s dementia models, Bioorg. Med. Chem. 16 (2008), pp. 5157–5163.
  • V. Jeyachandran, R.R. Kumar, M.A. Ali, and T.S. Choon, A one-pot domino synthesis and discovery of highly functionalized dihydrobenzo[b]thiophenes as AChE inhibitors, Bioorg. Med. Chem. Lett. 23 (2013), pp. 2101–2105.
  • S.B. Bharate, L. Guo, T.E. Reeves, D.M. Cerasoli, and C.M. Thompson, New series of monoquaternary pyridinium oximes: Synthesis and reactivation potency for paraoxon-inhibited electric eel and recombinant human acetylcholinesterase, Bioorg. Med. Chem. Lett. 19 (2009), pp. 5101–5104.
  • M. Pietsch and M. Gutschow, Synthesis of tricyclic 1,3-oxazin-4-ones and kinetic analysis of cholesterol esterase and acetylcholinesterase inhibition, J. Med. Chem. 48 (2005), pp. 8270–8288.
  • L. Iuliano, A. Pacelli, M. Ciacciarelli, C. Zerbinati, S. Fagioli, F. Piras, M.D. Orfei, P. Bossu, F. Pazzelli, G. Serviddio, C. Caltagirone, and G. Spalletta, Plasma fatty acid lipidomics in amnestic mild cognitive impairment and Alzheimer’s disease, J. Alzheimers Dis. 36 (2013), pp. 545–553.
  • Y. Okada and M. Okada, Protective effects of plant seed extracts against amyloid beta-induced neurotoxicity in cultured hippocampal neurons, J. Pharm. Bioallied Sci. 5 (2013), pp. 141–147.
  • R. Cecilia, U. Kunz, and T. Turek, Possibilities of process intensification using microwaves applied to catalytic microreactors, Chem. Engin. Process. Process Intensif. 46 (2007), pp. 870–881.
  • M. Nuchter, B. Ondruschka, W. Bonrath, and A. Gum, Microwave assisted synthesis – A critical technology overview, Green Chem. 6 (2004), pp. 128–141.
  • H. Weissbach, T.E. Smith, J.W. Daly, B. Witkop, and S. Udenfriend, A rapid spectrophotometric assay of mono-amine oxidase based on the rate of disappearance of kynuramine, J. Biol. Chem. 235 (1960), pp. 1160–1163.
  • L. Novaroli, M. Reist, E. Favre, A. Carotti, M. Catto, and P.A. Carrupt, Human recombinant monoamine oxidase B as reliable and efficient enzyme source for inhibitor screening, Bioorg. Med. Chem. 13 (2005), pp. 6212–6217.
  • L.J. Legoabe, A. Petzer, and J.P. Petzer, alpha-Tetralone derivatives as inhibitors of monoamine oxidase, Bioorg. Med. Chem. Lett. 24 (2014), pp. 2758–2763.
  • M.J. Matos, C. Teran, Y. Perez-Castillo, E. Uriarte, L. Santana, and D. Vina, Synthesis and study of a series of 3-arylcoumarins as potent and selective monoamine oxidase B inhibitors, J. Med. Chem. 54 (2011), pp. 7127–7137.
  • S.Y. Kang, K.Y. Lee, S.H. Sung, M.J. Park, and Y.C. Kim, Coumarins isolated from Angelica gigas inhibit acetylcholinesterase: Structure–activity relationships, J. Nat. Prod. 64 (2001), pp. 683–685.
  • G.L. Ellman, K.D. Courtney, V. Andres Jr, and R.M. Feather-Stone, A new and rapid colorimetric determination of acetylcholinesterase activity, Biochem. Pharmacol. 7 (1961), pp. 88–95.
  • M.A. Akyüz, S.S. Erdem, and D.E. Edmondson, The aromatic cage in the active site of monoamine oxidase B: Effect on the structural and electronic properties of bound benzylamine and p-nitrobenzylamine, J. Neural. Transm. (Vienna) 114 (2007), pp. 693–698.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.