160
Views
10
CrossRef citations to date
0
Altmetric
Articles

QSAR modelling using combined simple competitive learning networks and RBF neural networks

ORCID Icon, , &
Pages 257-276 | Received 14 Nov 2017, Accepted 02 Jan 2018, Published online: 26 Jan 2018

References

  • J. Luo, J. Hu, L. Fu, C. Liu, and X. Jin, Use of artificial neural network for a QSAR study on neurotrophic activities of Np-tolyl/phenylsulfonyl L-amino acid thiolester derivatives, Procedia Eng. 15 (2011), pp. 5158–5163.
  • A. Malek-Khatabi, M. Kompany-Zareh, S. Gholami, and S. Bagheri, Replacement based non-linear data reduction in radial basis function networks QSAR modeling, Chemom. Intell. Lab. Syst. 135 (2014), pp. 157–165.
  • M. Jalali-Heravi and M. Asadollahi-Baboli, Quantitative structure–activity relationship study of serotonin (5-HT7) receptor inhibitors using modified ant colony algorithm and adaptive neuro-fuzzy interference system (ANFIS), Eur. J. Med. Chem. 44 (2009), pp. 1463–1470.
  • M. Kissi and M. Ramdani, A hybrid decision trees-adaptive neuro-fuzzy inference system in prediction of anti-HIV molecules, Expert Syst. Appl. 38 (2011), pp. 6376–6380.
  • M. Shahlaei and A. Pourhossein, Modeling of CCR5 antagonists as anti HIV agents using combined genetic algorithm and adaptive neuro-fuzzy inference system (GA–ANFIS), Med. Chem. Res. 22 (2013), pp. 4423–4436.
  • S.-S. So and M. Karplus, Evolutionary optimization in quantitative structure− activity relationship: An application of genetic neural networks, J. Med. Chem. 39 (1996), pp. 1521–1530.
  • X.J. Yaoa, A. Panaye, J.P. Doucet, H.F. Chen, R.S. Zhang, B.T. Fan, M.C. Liu, and Z.D. Hub, Comparative classification study of toxicity mechanisms using support vector machines and radial basis function neural networks, Anal. Chim. Acta 535 (2005), pp. 259–273.
  • P.P. Roy, S. Paul, I. Mitra, and K. Roy, On two novel parameters for validation of predictive QSAR models, Molecules 14 (2009), pp. 1660–1701.
  • J. Devillers, Linear versus nonlinear QSAR modeling of the toxicity of phenol derivatives to Tetrahymena pyriformis, SAR QSAR Environ. Res. 15 (2004), pp. 237–249.
  • T.I. Netzeva, T.W. Schultz, A.O. Aptula, and M.T.D. Cronin, Partial least squares modelling of the acute toxicity of aliphatic compounds to Tetrahymena pyriformis, SAR QSAR Environ. Res. 14 (2003), pp. 265–283.
  • M. Goodarzi, M.P. Freitas, and R. Jensen, Ant colony optimization as a feature selection method in the QSAR modeling of anti-HIV-1 activities of 3-(3,5-dimethylbenzyl)uracil derivatives using MLR, PLS and SVM regressions, Chemom. Intell. Lab. Syst. 98 (2009), pp. 123–129.
  • Y. Yu, R. Su, L. Wang, W. Qi, and Z. He, Comparative QSAR modeling of antitumor activity of ARC-111 analogues using stepwise MLR, PLS, and ANN techniques, Med. Chem. Res. 19 (2010), pp. 1233–1244.
  • A. Afantitis, G. Melagraki, H. Sarimveis, P.A. Koutentis, O. Igglessi-Markopoulou, and G. Kollias, A combined LS-SVM & MLR QSAR workflow for predicting the inhibition of CXCR3 receptor by quinazolinone analogs, Mol. Divers. 14 (2010), pp. 225–235.
  • J. Li, B. Lei, H. Liu, S. Li, X. Yao, M. Liu, and P. Gramatica, QSAR study of malonyl-CoA decarboxylase inhibitors using GA-MLR and a new strategy of consensus modeling, J. Comput. Chem. 29 (2008), pp. 2636–2647.
  • G. Melagraki, A. Afantitis, K. Makridima, H. Sarimveis, and O. Igglessi-Markopoulou, Prediction of toxicity using a novel RBF neural network training methodology, J. Mol. Model. 12 (2006), pp. 297–305.
  • G. Melagraki, A. Afantitis, H. Sarimveis, O. Igglessi-Markopoulou, and A. Alexandridis, A novel RBF neural network training methodology to predict toxicity to Vibrio fischeri, Mol. Divers. 10 (2006), pp. 213–221.
  • A. Habibi-Yangjeh, M. Danandeh-Jenagharad, and M. Nooshyar, Application of artificial neural networks for predicting the aqueous acidity of various phenols using QSAR, J. Mol. Model. 12 (2006), pp. 338–347.
  • F.R. Burden, M.G. Ford, D.C. Whitley, and D.A. Winkler, Use of automatic relevance determination in QSAR studies using Bayesian neural networks, J. Chem. Inf. Comput. Sci. 40 (2000), pp. 1423–1430.
  • I.V. Tetko, V.V. Kovalishyn, and D.J. Livingstone, Volume learning algorithm artificial neural networks for 3D QSAR studies, J. Med. Chem. 44 (2001), pp. 2411–2420.
  • M. Goodarzi, M.P. Freitas, and R. Jensen, Feature selection and linear/nonlinear regression methods for the accurate prediction of glycogen synthase kinase-3Β inhibitory activities, J. Chem. Inf. Model. 49 (2009), pp. 824–832.
  • J. Antanasijević, D. Antanasijević, V. Pocajt, N. Trišović, and K. Fodor-Csorba, A QSPR study on the liquid crystallinity of five-ring bent-core molecules using decision trees, MARS and artificial neural networks, RSC Adv. 6 (2016), pp. 18452–18464.
  • M. Asadollahi-Baboli, In silico evaluation, molecular docking and QSAR analysis of quinazoline-based EGFR-T790M inhibitors, Mol. Divers. 20 (2016), pp. 729–739.
  • D. Qu, A. Yan, and J.S. Zhang, SAR and QSAR study on the bioactivities of human epidermal growth factor receptor-2 (HER2) inhibitors, SAR QSAR Environ. Res. 28 (2017), pp. 111–132.
  • J.P. Doucet, E. Papa, A. Doucet-Panaye, and J. Devillers, QSAR models for predicting the toxicity of piperidine derivatives against Aedes aegypti, SAR QSAR Environ. Res. 28 (2017), pp. 451–470.
  • H. Du, J. Wang, X. Zhang, and Z. Hu, A novel quantitative structure-activity relationship method to predict the affinities of MT3 melatonin binding site, Eur. J. Med. Chem. 43 (2008), pp. 2861–2869.
  • S. Gupta, N. Basant, D. Mohan, and K.P. Singh, Room-temperature and temperature-dependent QSRR modelling for predicting the nitrate radical reaction rate constants of organic chemicals using ensemble learning methods, SAR QSAR Environ. Res. 27 (2016), pp. 539–558.
  • N.L. Mai, C.K. Kim, B. Park, H.J. Park, S.H. Lee, and Y.M. Koo, Prediction of cellulose dissolution in ionic liquids using molecular descriptors based QSAR model, J. Mol. Liq. 215 (2016), pp. 541–548.
  • A. Kryshchyshyn, O. Devinyak, D. Kaminskyy, P. Grellier, and R. Lesyk, Development of predictive QSAR models of 4-thiazolidinones antitrypanosomal activity using modern machine learning algorithms, Mol. Inform. preprint (2017). Available at http://onlinelibrary.wiley.com/doi/10.1002/minf.201700078/full.
  • S. Ren, Modeling the toxicity of aromatic compounds to Tetrahymena pyriformis: The response surface methodology with nonlinear methods, J. Chem. Inf. Comput. Sci. 43 (2003), pp. 1679–1687.
  • Y. Ren, H. Liu, S. Li, X. Yao, and M. Liu, Prediction of binding affinities to beta1 isoform of human thyroid hormone receptor by genetic algorithm and projection pursuit regression, Bioorg. Med. Chem. Lett. 17 (2007), pp. 2474–82.
  • K.Z. Myint, L. Wang, Q. Tong, and X.Q. Xie, Molecular fingerprint-based artificial neural networks QSAR for ligand biological activity predictions, Mol. Pharm. 9 (2012), pp. 2912–2923.
  • X.J. Yao, A. Panaye, J.P. Doucet, R.S. Zhang, H.F. Chen, M.C. Liu, et al., Comparative study of QSAR/QSPR correlations using support vector machines, radial basis function neural networks, and multiple linear regression, J. Chem. Inf. Model. 44 (2004), pp. 1257–1266.
  • B. Walczak and D.L. Massart, Local modelling with radial basis function networks, Chemom. Intell. Lab. Syst. 50 (2000), pp. 179–198.
  • P. Patrinos, A. Alexandridis, K. Ninos, and H. Sarimveis, Variable selection in nonlinear modeling based on RBF networks and evolutionary computation, Int. J. Neural Syst. 20 (2010), pp. 365–379.
  • B.M. Vaziri and A. Shahsavand, Analysis of supersonic separators geometry using generalized radial basis function (GRBF) artificial neural networks, J. Nat. gas Sci. Eng. 13 (2013), pp. 30–41.
  • X. Yao, Y. Wang, X. Zhang, R. Zhang, M. Liu, Z. Hu, and B. Fan, Radial basis function neural network-based QSPR for the prediction of critical temperature, Chemom. Intell. Lab. Syst. 62 (2002), pp. 217–225.
  • J.C. Patra, R.W.S. Cheong, P.K. Meher, and G. Chakraborty, Determination of QSAR of aldose reductase inhibitors using an RBF network, in Systems, Man and Cybernetics, 2008. SMC 2008. IEEE International Conference on, 2008, pp. 1713–1718.
  • N. Qu, L. Wang, M. Zhu, Y. Dou, and Y. Ren, Radial basis function networks combined with genetic algorithm applied to nondestructive determination of compound erythromycin ethylsuccinate powder, Chemom. Intell. Lab. Syst. 90 (2008), pp. 145–152. Available at http://ieeexplore.ieee.org/document/4811535/?tp=&arnumber=4811535&filter%3DAND(p_IS_Number:4811240)%26pageNumber%3D20
  • T. Ojala and P. Vuorimaa, Modified Kohonen’s learning laws for RBF network, in Artificial Neural Nets and Genetic Algorithms, D.W. Pearson, N. C. Steele, and R. F. Albrecht, eds., 1995, pp. 356–359.
  • R. Hecht-Nielsen, Self-Organization and Associative Memory, IEEE J. Quant Electron 25 (1989), p. 237.
  • K. Mehrotra, C.K. Mohan, and S. Ranka, Elements of Artificial Neural Networks, MIT Press, USA, 1997.
  • I. Kuzmanovski and M. Novič, Counter-propagation neural networks in Matlab, Chemom. Intell. Lab. Syst. 90 (2008), pp. 84–91.
  • I. Kuzmanovski, M. Novič, and M. Trpkovska, Automatic adjustment of the relative importance of different input variables for optimization of counter-propagation artificial neural networks, Anal. Chim. Acta 642 (2009), pp. 142–147.
  • D.X. Jiang, Y. Li, J. Li, and G.X. Wang, Prediction of the aquatic toxicity of phenols to Tetrahymena pyriformis from molecular descriptors, Int. J. Environ. Res. 5 (2011), pp. 923–938.
  • S. Ren, Determining the mechanisms of toxic action of phenols to Tetrahymena pyriformis, Environ. Toxicol. 17 (2002), pp. 119–127.
  • Y. Brito-Sánchez, J.A. Castillo-Garit, H. Le-Thi-Thu, Y. González-Madariaga, F. Torrens, Y. Marrero-Ponce, and J. Enrique Rodríguez-Borges, Comparative study to predict toxic modes of action of phenols from molecular structures, SAR QSAR Environ. Res. 24 (2013), pp. 235–251.
  • M.D. Ertürk, M.T. Saçan, M. Novic, and N. Minovski, Quantitative structure–activity relationships (QSARs) using the novel marine algal toxicity data of phenols, J. Mol. Graph. Model. 38 (2012), pp. 90–100.
  • A.O. Aptula, T.I. Netzeva, I.V. Valkova, M.T.D. Cronin, T.W. Schultz, R. Kühne, and G. Schüürmann, Multivariate discrimination between modes of toxic action of phenols, Mol. Inform. 21 (2002), pp. 12–22.
  • M.T.D. Cronin, A.O. Aptula, J.C. Duffy, T.I. Netzeva, P.H. Rowe, I.V. Valkova, and T.W. Schultz, Comparative assessment of methods to develop QSARs for the prediction of the toxicity of phenols to Tetrahymena pyriformis, Chemosphere 49 (2002), pp. 1201–1221.
  • K. Roy and P.L.A. PopeIier, Predictive QSPR modeling of the acidic dissociation constant (pKa) of phenols in different solvents, J. Phys. Org. Chem. 22 (2009), pp. 186–196.
  • J. Jover, R. Bosque, and J. Sales, Neural network based QSPR study for predicting pKa of phenols in different solvents, QSAR Comb. Sci. 26 (2007), pp. 385–397.
  • J.K. Liao, M. Seto, and K. Noma, Rho Kinase (ROCK) inhibitors, J. Cardiovasc. Pharmacol. 50 (2007), pp. 17–24.
  • M. Goodarzi, Y. Vander Heyden, and S. Funar-Timofei, Towards better understanding of feature-selection or reduction techniques for quantitative structure–activity relationship models, TrAC, Trends Anal. Chem. 42 (2013), pp. 49–63.
  • R. Sheikhpour, M.A. Sarram, S. Gharaghani, and M.A. Zare Chahooki, Feature selection based on graph Laplacian by utilizing compounds with known and unknown activities, J. Chemom. 31 (2017), e2899. Available at http://onlinelibrary.wiley.com/doi/10.1002/cem.2899/full.
  • M.A. Valizade Hasanloei, R. Sheikhpour, M.A. Sarram, E. Sheikhpour, and H. Sharifi, A combined Fisher and Laplacian score for feature selection in QSAR based drug design using compounds with known and unknown activities, J. Comput. Aided. Mol. Des. preprint 2017. Available at https://link.springer.com/article/10.1007/s10822-017-0094-6.
  • C. Yap, PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints, J. Comput. Chem. 32 (2011), pp. 1446–1474.
  • A. Rácz, D. Bajusz, and K. Héberger, Consistency of QSAR models: Correct split of training and test sets, ranking of models and performance parameters, SAR QSAR Environ. Res. 26 (2015), pp. 683–700.
  • C. Ventura, D.A.R.S. Latino, and F. Martins, Comparison of multiple linear regressions and neural networks based QSAR models for the design of new antitubercular compounds, Eur. J. Med. Chem. 70 (2013), pp. 831–845.
  • A. Tropsha, P. Gramatica, and V.K. Gombar, The importance of being earnest: Validation is the absolute essential for successful application and interpretation of QSPR models, QSAR Comb. Sci. 22 (2003), pp. 69–77.
  • A. Golbraikh and A. Tropsha, Beware of q2!, J. Mol. Graph. Model. 20 (2002), pp. 269–276.
  • P.P. Roy and K. Roy, On some aspects of variable selection for partial least squares regression models, Mol. Inform. 27 (2008), pp. 302–313.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.