232
Views
4
CrossRef citations to date
0
Altmetric
Articles

Consensus QSAR modelling of SIRT1 activators using simplex representation of molecular structure

&
Pages 277-294 | Received 05 Sep 2017, Accepted 08 Jan 2018, Published online: 01 Feb 2018

References

  • M.C. Haigis and D.A. Sinclair, Mammalian sirtuins: Biological insights and disease relevance, Annu. Rev. Pathol. 5 (2010), pp. 253–295.
  • A. Kumar and S. Chauhan, How much successful are the medicinal chemists in modulation of SIRT1: A critical review, Eur. J. Med. Chem. 119 (2016), pp. 45–69.
  • M. Pan, H. Yuan, M. Brent, E.C. Ding, and R. Marmorstein, SIRT1 contains N- and C-terminal regions that potentiate deacetylase activity, J. Biol. Chem. 278 (2012), pp. 2468–2476.
  • L. Jin, W. Wei, Y. Jiang, H. Peng, J. Cai, C. Mao, H. Dai, W. Choy, J.E. Bemis, M.R. Jirousek, J.C. Milne, C.H. Westphal, and R.B. Perni, Crystal structures of human SIRT3 displaying substrate-induced conformational changes, J. Biol. Chem. 284 (2009), pp. 24394–24405.
  • A.M. Davenport, F.M. Huber, and A. Hoelz, Structural and functional analysis of human SIRT1, J. Mol. Biol. 426 (2014), pp. 526–541.
  • H. Dai, A.W. Case, T.V. Riera, T. Considine, J.E. Lee, Y. Hamuro, H. Zhao, Y. Jiang, S.M. Sweitzer, B. Pietrak, B. Schwartz, C.A. Blum, J.S. Disch, R. Caldwell, B. Szczepankiewicz, C. Oalmann, P.Y. Ng, B.H. White, R. Casaubon, R. Narayan, K. Koppetsch, F. Bourbonais, B. Wu, J. Wang, D. Qian, F. Jiang, C. Mao, M. Wang, E. Hu, J.C. Wu, R.B. Perni, G.P. Vlasuk, and J.L. Ellis, Crystallographic structure of a small molecule SIRT1 activator-enzyme complex, Nat. Commun. 6 (2015), pp. 7645–7655.
  • K.T. Howitz, K.J. Bitterman, H.Y. Cohen, D.W. Lamming, S. Lavu, J.G. Wood, R.E. Zipkin, P. Chung, A. Kisielewski, L.L. Zhang, B. Scherer, and D.A. Sinclair, Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan, Nature 425 (2003), pp. 191–196.
  • C.B. Vu, J.E. Bemis, J.S. Disch, P.Y. Ng, J.J. Nunes, J.C. Milne, D.P. Carney, A.V. Lynch, J.J. Smith, S. Lavu, D. Phili, P.D. Lambert, D.J. Gagne, M.R. Jirousek, S. Schenk, J.M. Olefsky, and R.B. Perni, Discovery of imidazo[1,2-b]thiazole derivatives as novel SIRT1 activators, J. Med. Chem. 52 (2009), pp. 1275–1283.
  • J.E. Bemis, C.B. Vu, R. Xie, J.J. Nunes, P.Y. Ng, J.S. Disch, J.C. Milne, D.P. Carney, A.V. Lynch, L. Jin, J.J. Smith, S. Lavu, A. Iffland, M.R. Jirousek, and R.B. Perni, Discovery of oxazolo[4,5-b]pyridines and related heterocyclic analogs as novel SIRT1 activators, Bioorg. Med. Chem. Lett. 19 (2009), pp. 2350–2353.
  • C.M. Grozinger, E.D. Chao, H.E. Blackwell, D. Moazed, and S.L. Schreiber, Identification of a class of small molecule inhibitors of the sirtuins family of NAD+-dependent deacetylase by phenotypic screening, J. Biol. Chem. 276 (2001), pp. 38837–38843.
  • J.E. Bemis, J.S. Disch, P.Y. Ng, C. Oalmann, R.B. Perni, and C.B. Vu, Sirtuin modulating compounds, 7893086US Patent (2011).
  • C. Oalmann, R.B. Perni, J.S. Disch, C.B. Vu, B. Szczepankiewicz, G. Gualtieri, R.L. Casaubon, and K. Koppetsch. Patent appl; PCT WO 2009/00058348, 2009.
  • A. Cherkasov, E.N. Muratov, D. Fourches, A. Varnek, I.I. Baskin, M. Cronin, J. Dearden, P. Gramatica, Y.C. Martin, R. Todeschini, V. Consonni, V.E. Kuz’min, R. Cramer, R. Benigni, C. Yang, J. Rathman, L. Terfloth, J. Gasteiger, A. Richard, and A. Tropsha, QSAR modeling: Where have you been? Where are you going to? J. Med. Chem. 57 (2014), pp. 4977–5010.
  • H. Zhu, A. Tropsha, D. Fourches, A. Varnek, E. Papa, P. Gramatica, T. Oberg, P. Dao, A. Cherkasov, and I.V. Tetko, Combinatorial QSAR modeling of chemical toxicants tested against Tetrahymena pyriformis, J. Chem. Inf. Model. 48 (2008), pp. 766–784.
  • V.E. Kuz’min, A.G. Artemenko, and E.N. Muratov, Hierarchical QSAR technology based on the Simplex representation of molecular structure, J. Comput. Aided Mol. Des. 22 (2008), pp. 403–421.
  • C.B. Vu, J.S. Disch, S.K. Springer, C.A. Blum, and R.B. Perni, Quinolines and related analogs as sirtuin modulators, Patent Appl., PCT WO 2009/134973, 2009.
  • MarvinSketch 14.11.17.0. ChemAxon Ltd, Budapest, Hungary, 2014; software available at http://www.chemaxon.com.
  • A. Pedretti, L. Villa, and G. Vistoli, VEGA: A versatile program to convert, handle and visualize molecular structure on WINDOWS-based PCs, J. Mol. Graph. 21 (2002), pp. 47–49.
  • G. Hessler, O. Korb, P. Monecke, T. Stützle, and T.E. Exner, PharmACOphore: Multiple flexible ligand alignment based on ant colony optimization, J. Cheminform. 2010, 2 (Suppl. I), P17.
  • D. Cao, M. Wang, X. Qiu, D. Liu, H. Jiang, N. Yang, and R.-M. Xu, Structural basis for allosteric, substrate dependent stimulation of SIRT1 activity by resveratrol, Genes Dev. 29 (2015), pp. 1316–1325.
  • V.E. Kuz’min, A.G. Artemenko, P.G. Polischuk, E.N. Muratov, A.I. Hromov, A.V. Liahovskiy, S.A. Andronati, and S.Y. Makan, Hierarchic system of QSAR models (1D–4D) on the base of simplex representation of molecular structure, J. Mol. Model. 11 (2005), pp. 457–467.
  • V.E. Kuz’min, A.G. Artemenko, E.N. Muratov, V.P. Lozitsky, A.S. Fedchuk, R.N. Lozitska, Y.A. Boschenko, and T.L. Gridina, The hierarchical QSAR technology for effective virtual screening and molecular design of the promising antiviral compounds, Antiviral. Res. 65 (2005), pp. A70–A71.
  • V.E. Kuz’min, A.G. Artemenko, V.P. Lozitsky, E.N. Muratov, A.S. Fedtchouk, N.S. Dyachenko, L.N. Nosach, T.L. Gridina, L.I. Shitikova, L.M. Mudrik, A.K. Mescheriakov, V.A. Chelombitko, A.I. Zheltvay, and J-J.E. Vanden, The analysis of structure–anticancer and antiviral activity relationships for macrocyclic pyridinophanes and their analogues on the basis of 4D QSAR models (simplex representation of molecular structure), Acta. Biochim. Pol. 49 (2002), pp. 157–168.
  • V.E. Kuz’min, About homo- and heterochirality of dissymmetrical tetrahedrons (chiral simplexes). Stereochemical tunnelling, Zh. Strucur. Khim. 36 (1995), pp. 873–878.
  • W.L. Jolly, and W.B. Perry, Estimation of atomic charges by an electronegativity equalization procedure calibration with core binding energies, J. Am. Chem. Soc. 95 (1973), pp. 5442–5450.
  • R. Wang, Y. Fu, and L. Lai, A new atom-additive method for calculating partition coefficients, J. Chem. Inf. Comput. Sci. 37 (1997), pp. 615–621.
  • B.V. Ioffe, Chemistry Refractometric Methods, 3rd ed., Himiya, Leningrad, 1983.
  • H. Kubinyi, Evolutionary variable selection in regression and PLS analyses, J. Chemometr. 10 (1996), pp. 119–133.
  • E.N. Muratov, E.V. Varlamova, A.G. Artemenko, P.G. Polishchuk, L. Nikolaeva-Glomb, A.S. Galabov, and V.E. Kuz’min, QSAR analysis of poliovirus inhibition by dual combinations of antivirals, Struct. Chem. 24 (2013), pp. 1665–1679.
  • P. Gramatica, Principles of QSAR models validation: Internal and external, QSAR Comb. Sci. 26 (2007), pp. 694–701.
  • V.E. Kuzmina, E.N. Muratova, A.G. Artemenkoa, E.V. Varlamovab, L. Gorba, J. Wanga, and J. Leszczynskia, Consensus QSAR modeling of phosphor-containing chiral AChE inhibitors, QSAR Comb. Sci. 28 (2009), pp. 664–677.
  • A. Golbraikh and A. Tropsha, Beware of Q2!, J. Mol. Graph. Model. 20 (2002), pp. 269–276.
  • P.P. Roy, S. Paul, I. Mitra, and K. Roy, On two novel parameters for validation of predictive QSAR models, Molecules 14 (2009), pp. 1660–1701.
  • L.M. Shi, H. Fang, W.D. Tong, J. Wu, R. Perkins, R.M. Blair, W.S. Branham, S.L. Dial, C.I. Moland, and D.M. Sheehan, QSAR models using a large diverse set of estrogens, J. Chem. Inf. Comput. Sci. 41 (2001), pp. 186–195.
  • G. Schüurmann, R.-U. Ebert, J. Chen, B. Wang, and R. Kuehne, External validation and prediction employing the predictive squared correlation coefficient-test set activity mean vs. training set activity mean, J. Chem. Inf. Model. 48 (2008), pp. 2140–2145.
  • P. Gramatica and A. Sangion, A historical excursus on the statistical validation parameters for QSAR models: A clarification concerning metrics and terminology, J. Chem. Inf. Model. 56 (2016), pp. 1127–1131.
  • K. Roy, S. Kar, and P. Ambure, On a simple approach for determining applicability domain of QSAR models, Chemometr. Intell. Lab. Syst. 145 (2015), pp. 22–29.
  • P.K. Ojha, I. Mitra, R.N. Das, and K. Roy, Further exploring metrics for validation of QSPR models, Chemometr. Intell. Lab. Syst. 107 (2011), pp. 194–205.
  • J.B. Veselinovic, A.M. Veselinovic, A.P. Toropova, and A.A. Toropov, The Monte Carlo technique as a tool to predict LOAEL, Eur. J. Med. Chem. 116 (2016), pp. 71–75.
  • V.E. Kuz’min, A.G. Artemenko, E.N. Muratov, I.L. Volineckaya, V.A. Makarov, O.B. Riabova, P. Wutzler, and M. Schmidtke, Quantitative structure–activity relationship studies of [(biphenyloxy)propyl]isoxazole derivatives: Inhibitors of human rhinovirus 2 replication, J. Med. Chem. 50 (2007), pp. 4205–4213.
  • T. Asadollahi, S. Dadfarnia, A.M.H. Shabani, J.B. Ghasemi, and M. Sarkhosh, QSAR models for CXCR2 receptor antagonists based on the genetic algorithm for data preprocessing prior to application of the PLS linear regression method and design of the new compounds using in silico virtual screening, Molecules 16 (2011), pp. 1928–1955.
  • M. Meloun, J. Militky, M. Hill, and R.G. Brereton, Crucial problems in regression modelling and their solutions, Analyst 127 (2002), pp. 433–450.
  • V.E. Kuz’min, A.G. Artemenko, E.N. Muratov, P.G. Polischuk, L.N. Ognichenko, A.V. Liahovsky, A.I. Hromov, and E.V. Varlamova, Virtual screening and molecular design based on hierarchical QSAR technology, in Recent Advances in QSAR Studies, J.L.T. Puzyn, M. Cronin, eds., Springer, London, 2010, pp. 127–176.
  • J. Jaworska, N. Nikolova-Jeliazkova, and T. Aldenberg, QSAR applicability domain estimation by projection of the training set in descriptor space: A review, Altern. Lab. Anim. 33 (2005), pp. 445–459.
  • Organisation for Economic Co-operation and Development, Guidance document on the validation of (quantitative) structure–activity relationship [(Q)SAR] models, ENV/JM/MONO(2007) 2, OECD, Paris, France, 2007 Available at http://www.oecd.org/dataoecd/55/35/38130292.pdf .
  • K. Roy, P. Chakraborty, I. Mitra, P.K. Ojha, S. Kar, and R.N. Das, Some case studies on application of “” metrics for judging quality of QSAR predictions: Emphasis on scaling of response data, J. Comput. Chem. 34 (2013), pp. 1071–1082.
  • C.B. Vu, J.S. Disch, P.Y. Ng, C.A. Blum, and R.B. Perni, Benzimidazoles and related analogs as sirtuin modulators, US patent 20150057272 (2015), p. A1.
  • C. Oalmann, J.S. Disch, P.Y. Ng, and R.B. Perni, Thiazolopyridine sirtuin modulating compounds, US patent 8492401 (2013), p. B2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.