151
Views
7
CrossRef citations to date
0
Altmetric
Articles

A penalized quantitative structure–property relationship study on melting point of energetic carbocyclic nitroaromatic compounds using adaptive bridge penalty

, , ORCID Icon &
Pages 339-353 | Received 02 Dec 2017, Accepted 07 Feb 2018, Published online: 01 Mar 2018

References

  • R.F. Alamdari and M.H. Keshavarz , A simple method to predict melting points of non-aromatic energetic compounds , Fluid Phase Equilib. 292 (2010), pp. 1–6.
  • D. Wang , Y. Yuan , S. Duan , R. Liu , S. Gu , S. Zhao , L. Liu , and J. Xu , QSPR study on melting point of carbocyclic nitroaromatic compounds by multiple linear regression and artificial neural network , Chemom. Intell. Lab. Syst. 143 (2015), pp. 7–15.
  • M.H. Keshavarz , F. Gharagheizi , and H.R. Pouretedal , Improved reliable approach to predict melting points of energetic compounds , Fluid Phase Equilib. 308 (2011), pp. 114–128.
  • Y. Liu and A.J. Holder , A quantum mechanical quantitative structure–property relationship study of the melting point of a variety of organosilicons , J. Mol. Graph. 31 (2011), pp. 57–64.
  • G. Liang , J. Xu , and L. Liu , QSPR analysis for melting point of fatty acids using genetic algorithm based multiple linear regression (GA-MLR) , Fluid Phase Equilib. 353 (2013), pp. 15–21.
  • F. Yan , S. Xia , Q. Wang , Z. Yang , and P. Ma , Predicting the melting points of ionic liquids by the quantitative structure property relationship method using a topological index , J. Chem. Thermodyn. 62 (2013), pp. 196–200.
  • M. Watkins , N. Sizochenko , B. Rasulev , and J. Leszczynski , Estimation of melting points of large set of persistent organic pollutants utilizing QSPR approach , J. Mol. Model. 22 (2016), p. 55.
  • J.A. Morrill and E.F.C. Byrd , Development of quantitative structure property relationships for predicting the melting point of energetic materials , J. Mol. Graph. 62 (2015), pp. 190–201.
  • J.C. Dearden , P. Rotureau , and G. Fayet , QSPR prediction of physico-chemical properties for REACH , SAR QSAR Environ. Res. 24 (2013), pp. 279–318.
  • A.M. Al-Fakih , Z.Y. Algamal , M.H. Lee , H.H. Abdallah , H. Maarof , and M. Aziz , Quantitative structure–activity relationship model for prediction study of corrosion inhibition efficiency using two-stage sparse multiple linear regression , J. Chemom. 30 (2016), pp. 361–368.
  • C. Nieto-Draghi , G. Fayet , B. Creton , X. Rozanska , P. Rotureau , J.-C. de Hemptinne , P. Ungerer , B. Rousseau , and C. Adamo , A general guidebook for the theoretical prediction of physicochemical properties of chemicals for regulatory purposes , Chem. Rev. 115 (2015), pp. 13093–13164.
  • N. Farahani , F. Gharagheizi , S.A. Mirkhani , and K. Tumba , Ionic liquids: Prediction of melting point by molecular-based model , Thermochim. Acta 549 (2012), pp. 17–34.
  • A. Guendouzi and S.M. Mekelleche , Prediction of the melting points of fatty acids from computed molecular descriptors: A quantitative structure–property relationship study , Chem. Phys. Lipids 165 (2012), pp. 1–6.
  • R. Tibshirani , Regression shrinkage and selection via the Lasso , J. R. Stat. Soc. Ser. B-Stat. Methodol. 58 (1996), pp. 267–288.
  • J. Fan and R. Li , Variable selection via nonconcave penalized likelihood and its oracle properties , J. Amer. Statist. Assoc. 96 (2001), pp. 1348–1360.
  • H. Zou and T. Hastie , Regularization and variable selection via the elastic net , J. R. Stat. Soc. Ser. B-Stat. Methodol. 67 (2005), pp. 301–320.
  • H. Zou , The adaptive Lasso and its oracle properties , J. Amer. Statist. Assoc. 101 (2006), pp. 1418–1429.
  • A.M. Al-Fakih , Z.Y. Algamal , M.H. Lee , and M. Aziz , A sparse QSRR model for predicting retention indices of essential oils based on robust screening approach , SAR QSAR Environ. Res. 28 (2017), pp. 691–703.
  • J. Liu , W. Zhong , and R. Li , A selective overview of feature screening for ultrahigh-dimensional data , Sci. China Math. 58 (2015), pp. 1–22.
  • M.H. Keshavarz and H.R. Pouretedal , New approach for predicting melting point of carbocyclic nitroaromatic compounds , J. Hazard. Mater. 148 (2007), pp. 592–598.
  • R. Todeschini , V. Consonni , A. Mauri , and M. Pavan , DRAGON, version 6.0, Talete srl, 2010, Milan, Italy; software available at http://www.talete.mi.it/.
  • Z.Y. Algamal , M.H. Lee , A.M. Al-Fakih , and M. Aziz , High-dimensional QSAR modelling using penalized linear regression model with L1/2-norm , SAR QSAR Environ. Res. 27 (2016), pp. 703–719.
  • P. Filzmoser , M. Gschwandtner , and V. Todorov , Review of sparse methods in regression and classification with application to chemometrics , J. Chemom. 26 (2012), pp. 42–51.
  • Z.Y. Algamal , M.H. Lee , and A.M. Al-Fakih , High-dimensional quantitative structure–activity relationship modeling of influenza neuraminidase a/PR/8/34 (H1N1) inhibitors based on a two-stage adaptive penalized rank regression , J. Chemom. 30 (2016), pp. 50–57.
  • I.E. Frank and J.H. Friedman , A statistical view of some chemometrics regression tools , Technometrics 35 (1993), pp. 109–135.
  • C. Park and Y.J. Yoon , Bridge regression: Adaptivity and group selection , J. Stat. Plan. Infer. 141 (2011), pp. 3506–3519.
  • W.J. Fu , Penalized regressions: The bridge versus the Lasso , J. Comput. Graph. Stat. 7 (1998), pp. 397–416.
  • K. Knight and W. Fu , Asymptotics for Lasso-type estimators , Ann. Stat. 28 (2000), pp. 1356–1378.
  • J. Huang , J.L. Horowitz , and S. Ma , Asymptotic properties of bridge estimators in sparse high-dimensional regression models , Ann. Stat. 36 (2008), pp. 587–613.
  • Z. Chen , Y. Zhu , and C. Zhu , Adaptive bridge estimation for high-dimensional regression models , J. Inequal. Appl. 2016 (2016), p. 258.
  • A.E. Hoerl and R.W. Kennard , Ridge regression: Biased estimation for nonorthogonal problems , Technometrics 12 (1970), pp. 55–67.
  • S. Kawano , Selection of tuning parameters in bridge regression models via Bayesian information criterion , Stat. Pap. 55 (2014), pp. 1207–1223.
  • Z.Y. Algamal and M.H. Lee , Regularized logistic regression with adjusted adaptive elastic net for gene selection in high dimensional cancer classification , Comput. Biol. Med. 67 (2015), pp. 136–145.
  • N. Chirico and P. Gramatica , Real external predictivity of QSAR models. Part 2. New intercomparable thresholds for different validation criteria and the need for scatter plot inspection , J. Chem Inf. Model. 52 (2012), pp. 2044–2058.
  • R. Leardi and A. Lupiáñez , González, Genetic algorithms applied to feature selection in PLS regression: How and when to use them , Chemom. Intell. Lab. Syst. 41 (1998), pp. 195–207.
  • J. Devillers , Genetic Algorithms in Molecular Modeling , Academic Press, London, 1996, p. 327.
  • R. Todeschini and V. Consonni , Molecular descriptors for chemoinformatics , 2nd ed., Vol. 41, Wiley-VCH, Weinheim, Germany, 2009, p. 1257.
  • J. Caballero and M. Fernández , Linear and nonlinear modeling of antifungal activity of some heterocyclic ring derivatives using multiple linear regression and Bayesian-regularized neural networks , J. Mol. Model. 12 (2006), pp. 168–181.
  • A.R. Katritzky , U. Maran , M. Karelson , and V.S. Lobanov , Prediction of melting points for the substituted benzenes: A QSPR approach , J. Chem. Inf. Comput. Sci. 37 (1997), pp. 913–919.
  • C. Rücker , G. Rücker , and M. Meringer , y-Randomization and its variants in QSPR/QSAR , J. Chem Inf. Model. 47 (2007), pp. 2345–2357.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.