179
Views
15
CrossRef citations to date
0
Altmetric
Articles

Structural exploration of hydroxyethylamines as HIV-1 protease inhibitors: new features identified

ORCID Icon, ORCID Icon, , ORCID Icon &
Pages 385-408 | Received 19 Jan 2018, Accepted 28 Feb 2018, Published online: 23 Mar 2018

References

  • A.K. Ghosh , K.V. Rao , P.R. Nyalapatla , H.L. Osswald , C.D. Martyr , M. Aoki , H. Hayashi , J. Agniswamy , Y.F. Wang , H. Bulut , D. Das , I.T. Weber , and H. Mitsuya , Design and development of highly potent HIV-1 protease inhibitors with a crown-like oxotricyclic core as the P2-ligand to combat multidrug-resistant HIV variants , J. Med. Chem. 60 (2017), pp. 4267–4278.
  • A.K. Ghosh , H.L. Osswald , and G. Prato , Recent progress in the development of HIV-1 protease inhibitors for the treatment of HIV/AIDS , J. Med Chem. 59 (2016), pp. 5172–5208.
  • Y. Mehellou and E. De Clercq , Twenty-six years of anti-HIV drug discovery: Where do we stand and where do we go? J. Med. Chem. 53 (2010), pp. 521–538.
  • N.M. Midde , B.J. Patters , P. Rao , T.J. Cory , and S. Kumar , Investigational protease inhibitors as antiretroviral therapies , Expert Opin. Investig. Drugs 25 (2016), pp. 1189–1200.
  • P. Zhan , C. Pannecouque , E. De Clercq , and X. Liu , Anti-HIV drug discovery and development: Current innovations and future trends , J. Med. Chem. 59 (2016), pp. 2849–2878.
  • M.A.M. Subbaiah , N.A. Meanwell , and J.F. Kadow , Design strategies in the prodrugs of HIV-1 protease inhibitors to improve the pharmaceutical properties , Eur. J. Med. Chem. 139 (2017), pp. 865–883.
  • A.K. Ghosh , B.D. Chapsal , I.T. Weber , and H. Mitsuya , Design of HIV protease inhibitors targeting protein backbone: An effective strategy for combating drug resistance , Acc. Chem. Res. 41 (2008), pp. 78–86.
  • E. Lefebvre and C.A. Schiffer , Resilience to resistance of HIV-1 protease inhibitors: Profile of darunavir , AIDS Rev. 10 (2008), pp. 131–142.
  • M. Boffito , D. Miralles , and A. Hill , Pharmacokinetics, efficacy, and safety of darunavir/ritonavir 800/100 mg once-daily in treatment-naïve and -experienced patients , HIV Clin. Trials. 9 (2008), pp. 418–427.
  • J. Robertson and J. Feinberg , Darunavir: A nonpeptidic protease inhibitor for antiretroviral-naive and treatment-experienced adults with HIV infection , Expert Opin. Pharmacother. 13 (2012), pp. 1363–1375.
  • M.A. Islam and T.S. Pillay , Simplified molecular input line entry system-based descriptors in QSAR modeling for HIV-protease inhibitors , Chemometr. Intell. Lab. Syst. 153 (2016), pp. 67–74.
  • S. Bhargava , N. Adhikari , S.A. Amin , K. Das , S. Gayen , and T. Jha , Hydroxyethylamine derivatives as HIV-1 protease inhibitors: A predictive QSAR modelling study based on Monte Carlo optimization , SAR QSAR Environ. Res. 28 (2017), pp. 973–990.
  • M.K. Parai , D.J. Huggins , H. Cao , M.N.L. Nalam , A. Ali , C.A. Schiffer , B. Tidor , and T.M. Rana , Design, synthesis, and biological and structural evaluations of novel HIV-1 protease inhibitors to combat drug resistance , J. Med. Chem. 55 (2012), pp. 6328–6341.
  • A. Ali , G.S.K. Reddy , M.N.L. Nalam , S.G. Anjum , H. Cao , C.A. Schiffer , and T.M. Rana , Structure-based design, synthesis, and structure–activity relationship studies of HIV-1 protease inhibitors incorporating phenyloxazolidinones , J. Med. Chem. 53 (2010), pp. 7699–7708.
  • M.D. Altman , A. Ali , G.S.K. Reddy , M.N.L. Nalam , S.G. Anjum , H. Cao , S. Chellappan , V. Kairys , M.X. Fernandes , M.K. Gilson , C.A. Schiffer , T.M. Rana , and B. Tidor , HIV-1 protease inhibitors from inverse design in the substrate envelope exhibit subnanomolar binding to drug-resistant variants , J. Am. Chem. Soc. 130 (2008), pp. 6099–6113.
  • G.S.K. Reddy , A. Ali , M.N.L. Nalam , S.G. Anjum , H. Cao , R.S. Nathans , C.A. Schiffer , and T.M. Rana , Design and synthesis of HIV-1 protease inhibitors incorporating oxazolidinones as P2/P2′ ligands in pseudosymmetric dipeptide isosteres , J. Med. Chem. 50 (2007), pp. 4316–4328.
  • A. Ali , G.S.K. Reddy , H. Cao , S.G. Anjum , M.N.L. Nalam , C.A. Schiffer , and T.M. Rana , Discovery of HIV-1 protease inhibitors with picomolar affinities incorporating N-aryl-oxazolidinone-5-carboxamides as novel P2 ligands , J. Med. Chem. 49 (2006), pp. 7342–7356.
  • Protein Data Bank . RCSB. Available at https://www.rcsb.org/pdb/home/home.do.
  • S.A. Amin , N. Adhikari , S. Gayen , and T. Jha , Homoisoflavonoids as potential antiangiogenic agents for retinal neovascularization , Biomed. Pharmacother. 95 (2017), pp. 818–827.
  • S.A. Amin , N. Adhikari , T. Jha , and S. Gayen , An integrated multi-QSAR modeling approach for designing Knoevenagel-type indoles with enhancing cytotoxic profiles , Curr. Comput. Aided Drug Des. 13 (2017), pp. 336–345.
  • N. Adhikari , S.A. Amin , A. Saha , and T. Jha , Combating breast cancer with non-steroidal aromatase inhibitors (NSAIs): Understanding the chemico-biological interactions through comparative SAR/QSAR study , Eur. J. Med. Chem. 137 (2017), pp. 365–438.
  • Y. Wang , F. Yan , Q. Jia , Y. Dai , and Q. Wang , Quantitative structure–activity relationship of anti-HIV integrase and reverse transcriptase inhibitors using norm indexes , SAR QSAR Environ. Res. 28 (2017), pp. 1025–1044.
  • N. Adhikari , S.A. Amin , A. Saha , and T. Jha , Understanding chemico-biological interactions of glutamate MMP-2 inhibitors through rigorous alignment-dependent 3D-QSAR analyses , Chem. Select. 2 (2016), pp. 7888–7898.
  • S.A. Amin , N. Adhikari , T. Jha , and S. Gayen , First molecular modeling report on novel arylpyrimidine kynurenine monooxygenase inhibitors through multi-QSAR analysis against Huntington’s disease: A proposal to chemists! , Bioorg. Med. Chem. Lett. 26 (2016), pp. 5712–5718.
  • Chem Draw Ultra 8.0 . Cambridge Soft Corporation: USA. Software available at http://www.cambridgesoft.com
  • T. Jha , N. Adhikari , A. Saha , and S.A. Amin , Multiple molecular modelling studies on some derivatives and analogues of glutamic acid as matrix metalloproteinase-2 inhibitors , SAR QSAR Environ. Res. 29 (2018), pp. 43–68.
  • D. Rogers , R.D. Brown , and M. Hahn , Using extended-connectivity fingerprints with Laplacian-modified Bayesian analysis in high-throughput screening follow-up , J. Biomol. Screening 10 (2005), pp. 682–686.
  • A.E. Klon , J.F. Lowrie , and D.J. Diller , Improved naïve Bayesian modeling of numerical data for absorption, distribution, metabolism and excretion (ADME) property prediction , J. Chem. Inf. Model. 46 (2006), pp. 1945–1956.
  • L.L. Liu , J. Lu , Y. Lu , M.Y. Zheng , X.M. Luo , W.L. Zhu , H.L. Jiang , and K.X. Chen , Novel Bayesian classification models for predicting compounds blocking hERG potassium channels , Acta Pharmacol. Sin. 35 (2014), pp. 1093–1102.
  • H. Zhang , Y.L. Kang , Y.Y. Zhu , K.X. Zhao , J.Y. Liang , L. Ding , T.G. Zhang , and J. Zhang , Novel naïve Bayes classification models for predicting the chemical Ames mutagenicity , Toxicol. In Vitro 41 (2017), pp. 56–63.
  • Discovery Studio 3.0, Accelrys Inc., San Diego, USA, 2015; software available at http://www.accelrys.com.
  • R. David and H. Mathew , Extended-connectivity fingerprints , J. Chem. Inf. Model. 50 (2010), pp. 742–754.
  • S.A. Amin , S. Bhargava , N. Adhikari , S. Gayen , and T. Jha , Exploring pyrazolo[3,4-d]pyrimidine phosphodiesterase 1 (PDE1) inhibitors: A predictive approach combining comparative validated multiple molecular modelling techniques , J. Biomol. Struct. Dyn. 36 (2018), pp. 590–608.
  • S.A. Amin , N. Adhikari , S. Gayen , and T. Jha , First report on the structural exploration and prediction of new BPTES analogs as glutaminase inhibitors , J. Mol. Struct. 1143 (2017), pp. 49–64.
  • T. Fawcett , An introduction to ROC analysis , Patt. Recogn. Lett. 27 (2006), pp. 861–874.
  • A. Heidari and M.H. Fatemi , Comparative molecular field analysis (CoMFA), topomer CoMFA, and hologram QSAR studies on a series of novel HIV-1 protease inhibitors , Chem. Biol. Drug Des. 89 (2017), pp. 918–931.
  • S.S. Bhayye , K. Roy , and A. Saha , Pharmacophore generation, atom-based 3D-QSAR, HQSAR and activity cliff analyses of benzothiazine and deazaxanthine derivatives as dual A2A antagonists/MAO-B inhibitors , SAR QSAR Environ. Res. 27 (2016), pp. 183–202.
  • C. Zhang , C. Du , Z. Feng , J. Zhu , and Y. Li , Hologram quantitative structure activity relationship, docking, and molecular dynamics studies of inhibitors for CXCR4 , Chem. Biol. Drug Des. 85 (2015), pp. 119–136.
  • S. Yu , J. Yuan , J. Shi , X. Ruan , T. Zhang , Y. Wang , and Y. Du , HQSAR and topomer CoMFA for predicting melanocortin-4 receptor binding affinities of trans-4-(4-chlorophenyl) pyrrolidine-3-carboxamides , Chemom. Intell. Lab. Sys. 146 (2015), pp. 34–41.
  • SYBYL-X 2.0. Tripos Inc., St. Louis, MO, 2015; software available at http://www.certara.com.
  • M. Clark , R.D. Cramer , and N. van Opdenbosch , Validation of the general purpose tripos 5.2 force field , J. Comput. Chem. 10 (1989), pp. 982–1012.
  • R.D. Cramer , D.E. Patterson , and J.D. Bunce , Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier protein , J. Am. Chem. Soc. 110 (1988), pp. 5959–5967.
  • E. Pourbasheer , R. Aalizadeh , T.S. Shokouhi , M.R. Ganjali , P. Norouzi , and J. Shadmanesh , 2D and 3D quantitative structure–activity relationship study of hepatitis C virus NS5B polymerase inhibitors by comparative molecular field analysis and comparative molecular similarity indices analysis methods , J. Chem. Inf. Model. 54 (2014), pp. 2902–2914.
  • G. Klebe , U. Abraham , and T. Mietzner , Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity , J. Med. Chem. 37 (1994), pp. 4130–4146.
  • A.K. Halder , S.A. Amin , T. Jha , and S. Gayen , Insight into the structural requirements of pyrimidine-based phosphodiesterase 10A (PDE10A) inhibitors by multiple validated 3D QSAR approaches , SAR QSAR Environ. Res. 28 (2017), pp. 253–273.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.