81
Views
12
CrossRef citations to date
0
Altmetric
Articles

Probability-driven 3D pharmacophore mapping of antimycobacterial potential of hybrid molecules combining phenylcarbamoyloxy and N-arylpiperazine fragments

, , , &
Pages 801-821 | Received 28 Apr 2018, Accepted 25 Aug 2018, Published online: 19 Sep 2018

References

  • H.C. Kolb, M.G. Finn, and K.B. Sharpless, Click chemistry: Diverse chemical function from a few good reactions, Angew. Chem. Int. Ed. Engl. 40 (2001), pp. 2004–2021.
  • T.I. Oprea, Property distribution of drug-related chemical databases, J. Comput. Aided Mol. Des. 14 (2000), pp. 251–264.
  • J. Devillers, Methods for building QSARs, Methods Mol. Biol. 930 (2013), pp. 3–27.
  • R. Gieleciak, T. Magdziarz, A. Bak, and J. Polanski, Modeling robust QSAR. 1. Coding molecules in 3D-QSAR – From a point to surface sectors and molecular volume, J. Chem. Inf. Model. 45 (2005), pp. 1447–1455.
  • R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH Verlag, Weinheim, 2000.
  • I.V. Tetko and T.I Oprea, Early ADME/T predictions: Toy or tool? in Chemoinformatics Approaches to Virtual Screening, A. Varnek, and A. Tropsha, eds., Royal Society of Chemistry, Cambridge, 2008, pp. 240–267.
  • H. van de Waterbeemd and E. Gifford, ADMET in silico modeling: Towards prediction paradise? Nat. Rev. Drug Discov. 2 (2003), pp. 192–204.
  • H. Kubinyi, Hansch Analysis and Related Approaches, Wiley-VCH Verlag, Weinheim, 1993.
  • A.K. Ghose, T. Herbertz, J.M. Salvino, and J.P. Mallamo, Knowledge-based chemoinformatic approaches to drug discovery, Drug Discov. Today 11 (2006), pp. 1107–1114.
  • A. Bak, M. Wyszomirski, T. Magdziarz, A. Smoliński, and J. Polanski, Structure-based modeling of dye-fiber affinity with SOM-4D-QSAR paradigm: Application to set of anthraquinone derivatives, Comb. Chem. High Throughput Screen. 17 (2014), pp. 485–502.
  • A. Bak, T. Magdziarz, and J. Polanski, Pharmacophore-based database mining for probing fragmental drug-likeness of diketo acid analogues, SAR QSAR Environ. Res. 3 (2013), pp. 185–204.
  • J. Polanski, R. Gieleciak, T. Magdziarz, and A. Bak, A. GRID formalism for the comparative molecular surface analysis: Application to the CoMFA benchmark steroids, azo dyes, and HEPT derivatives, J. Chem. Inf. Comput. Sci. 44 (2004), pp. 1423–1435.
  • J. Polanski, A. Bak, R. Gieleciak, and T. Magdziarz, Self-organizing neural networks for modeling robust 3D and 4D QSAR: Application to dihydrofolate reductase inhibitors, Molecules 9 (2004), pp. 1148–1159.
  • A. Bak, V. Kozik, A. Smolinski, and J. Jampilek, In silico estimation of basic activity-relevant parameters for a set of drug absorption promoters, SAR QSAR Environ. Res. 28 (2017), pp. 427–449.
  • J. Polanski, A. Bak, R. Gieleciak, and T. Magdziarz, Modeling robust QSAR, J. Chem. Inf. Model. 46 (2006), pp. 2310–2318.
  • K. Waisser, K. Drazkova, J. Cizmarik, and J. Kaustova, Antimycobacterial activity of basic ethylesters of alkoxy-substituted phenylcarbamic acids, Folia Microbiol. 48 (2003), pp. 45–50.
  • K. Waisser, K. Drazkova, J. Cizmarik, and J. Kaustova, Antimycobacterial activity of piperidinylpropyl esters of alkoxy-substituted phenylcarbamic acids, Folia Microbiol. 48 (2003), pp. 585–587.
  • K. Waisser, K. Drazkova, J. Cizmarik, and J. Kaustova, A new group of potential antituberculotics: Hydrochlorides of piperidinylalkyl esters of alkoxy-substituted phenylcarbamic acids, Folia Microbiol. 49 (2004), pp. 265–268.
  • C. Hansch and J.M. Clayton, Lipophilic character and biological activity of drugs II. The parabolic case, J. Pharm. Sci. 62 (1973), pp. 1–21.
  • K. Waisser, K. Drazkova, J. Cizmarik, and J. Kaustova, Influence of lipophilicity on the antimycobacterial activity of the hydrochlorides of piperidinylethyl esters of ortho-substituted phenylcarbamic acids, Sci. Pharm. 72 (2004), pp. 43–49.
  • G. Panda, Shagufta; A.K. Srivastava, and S. Sinha, Synthesis and antitubercular activity of 2-hydroxy-aminoalkyl derivatives of diaryloxy methano phenanthrenes, Bioorg. Med. Chem. Lett. 15 (2005), pp. 5222–5225.
  • R.S. Upadhayaya, G.M. Kulkarni, N.R. Vasireddy, J.K. Vandavasi, S.S. Dixit, V. Sharma, and J. Chattopadhyaya, Design, synthesis and biological evaluation of novel triazole, urea and thiourea derivatives of quinoline against Mycobacterium tuberculosis, Bioorg. Med. Chem. 17 (2009), pp. 4681–4692.
  • R.S. Upadhayaya, J.K. Vandavasi, R.A. Kardile, S.V. Lahore, S.S. Dixit, H.S. Deokar, P.D. Shinde, M.P. Sarman, and J. Chattopadhyaya, Novel quinoline and naphthalene derivatives as potent antimycobacterial agents, Eur. J. Med. Chem. 45 (2010), pp. 1854–1867.
  • A. Bak, V. Kozik, A. Smolinski, and J. Jampilek, Multidimensional (3D/4D-QSAR) probability-guided pharmacophore mapping: Investigation of activity profile for a series of drug absorption promoter, RSC Adv. 6 (2016), pp. 76183–76205.
  • H. Kubinyi, QSAR and 3D QSAR in drug design. Part 1: Methodology, Drug Discov. Today 2 (1997), pp. 457–467.
  • H. Kubinyi, QSAR and 3D QSAR in drug design. Part 2: Applications and problems, Drug Discov. Today 2 (1997), pp. 538–546.
  • J. Zupan and J. Gasteiger, Neural Networks and Drug Design for Chemists. 2nd ed., Wiley-VCH, Weinheim, 1999.
  • T. Magdziarz, B. Lozowicka, R. Gieleciak, A. Bak, J. Polanski, and Z. Chilmonczyk, 3D QSAR study of hypolipidemic asarones by comparative molecular surface analysis, Bioorg. Med. Chem. 14 (2006), pp. 1630–1643.
  • J. Polanski, Self-organizing neural networks for pharmacophore mapping, Adv. Drug. Deliver. Rev. 55 (2003), pp. 1149–1162.
  • J. Polanski, R. Gieleciak, and A. Bak, Probability issues in molecular design: Predictive and modeling ability in 3D-QSAR schemes, Comb. Chem. High Throughput Screen. 7 (2004), pp. 793–807.
  • A. Bak and J. Polanski, A 4D-QSAR study on anti-HIV HEPT analogues, Bioorg. Med. Chem. 14 (2006), pp. 273–279.
  • D.T. Stanton, QSAR and QSPR model interpretation using partial least squares (PLS) analysis, Curr. Comput. Aided Drug Des. 8 (2012), pp. 107–127.
  • A. Doweyko, 3D-QSAR illusions, J. Comput.-Aided Mol. Des. 18 (2004), pp. 587–596.
  • A. Bak and J. Polanski, Modeling robust QSAR 3: SOM-4D-QSAR with iterative variable elimination IVE-PLS: Application to steroid, azo dye, and benzoic acid series, J. Chem. Inf. Model. 47 (2007), pp. 1469–1480.
  • V. Centner, D.L. Massart, O.E. de Noord, S. de Jong, B.M.V. Vandeginste, and C. Sterna, Elimination of uninformative variables for multivariate calibration, Anal. Chem. 68 (1996), pp. 3851–3858.
  • M. Fialkowski, K.J.M. Bishop, V.A. Chubukov, C.J. Campbell, and B.A. Grzybowski, Architecture and evolution of organic chemistry, Angew. Chem. Int. Ed. 44 (2005), pp. 7263–7269.
  • J. Polanski and J. Gasteiger, Computer representation of chemical compounds, in Handbook of Computational Chemistry, J. Leszczynski, and T. Puzyn, eds., Springer, Dordrecht, 2016.
  • M.M. Hann and G.M. Keserü, Finding the sweet spot: The role of nature and nurture in medicinal chemistry, Nat. Rev. Drug Discov. 11 (2012), pp. 355–365.
  • A. Smolinski, L. Drobek, V. Dombek, and A. Bak, Modeling of experimental data on trace elements and organic compounds content in industrial waste dumps, Chemosphere 162 (2016), pp. 189–198.
  • I. Malik, E. Sedlarova, J. Csollei, E. Racanska, J. Cizmarik, and P. Kurfurst, Synthesis, physicochemical properties and biological activity of 1-(4-fluorophenyl)-4-[3-(2-, 3- and 4-alkyloxyphenylcarbamoyloxy)-2-hydroxypropyl]piperazinium chlorides, Sci. Pharm. 72 (2004), pp. 283–291.
  • I. Malik, E. Sedlarova, J. Csollei, F. Andriamainty, P. Kurfurst, and J. Vanco, Synthesis, spectral description, and lipophilicity parameters determination of phenylcarbamic acid derivatives with integrated N-phenylpiperazine moiety in the structure, Chem. Pap. 60 (2006), pp. 42–47.
  • I. Malik, M. Lukac, J. Galba, and J. Stolarikova, Synthesis and in vitro antimycobacterial investigation of 2-/3-alkoxyphenylcarbamic acid derivatives containing 4′-(pyrimidin-2′]-yl)piperazin-1′]-yl moiety, Fresen. Environ. Bull. 25 (2016), pp. 2052–2062.
  • I. Malik, J. Curillova, J. Csollei, J. Jampilek, I. Zadrazilova, R. Govender, J. O’Mahony, A. Coffey, and P. Mikus, The synthesis and in vitro screening of the 2-/3-alkoxyphenylcarbamic acid derivatives containing a 4′-(2′]-fluorophenyl)piperazin-1′]-moiety against some non-tuberculous mycobacterial strains, Fresen. Environ. Bull. 26 (2017), pp. 2760–2771.
  • P. Marvanova, T. Padrtova, T. Pekarek, J. Brus, J. Czernek, P. Mokry, O. Humpa, M. Oravec, and J. Jampilek, Synthesis and characterization of new 3-(4-arylpiperazin-1-yl)-2-hydroxypropyl 4-propoxybenzoates and their hydrochloride salts, Molecules 21 (2016), pp. 707–720.
  • K. Waisser, R. Dolezal, J. Cizmarik, I. Malik, and J. Kaustova, The potential antituberculotics of the series of 2-hydroxy-3-(4-phenylpiperazin-1-yl)-propylphenylcarbamates, Folia Pharm. Univ. Carol. 35 (2007), pp. 45–48.
  • A. Tropsha, Best practices for QSAR model development, validation and exploitation, Mol. Inf. 29 (2010), pp. 476–488.
  • N. Chirico and P. Gramatica, Real external predictivity of QSAR models: How to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient, J. Chem. Inf. Model. 51 (2011), pp. 2320–2335.
  • A. Golbraikh and A. Tropsha, Beware of q2! J. Mol. Graph. Model. 20 (2002), pp. 269–276.
  • D.L.J. Alexander, A. Tropsha, and D.A.Winkler, Beware of R2: Simple, unambiguous assessment of the prediction accuracy of QSAR and QSPR models, J. Chem. Inf. Model. 55 (2015), pp. 1316–1322.
  • K. Roy, R.N. Das, P. Ambure, and R.B. Aher, Be aware of error measures. Further studies on validation of predictive QSAR models, Chemom. Intell. Lab. 152 (2016), pp. 18–33.
  • J. Polanski, A. Kurczyk, A. Bak, and R. Musiol, Privileged structures – Dream or reality: Preferential organization of azanaphthalene scaffold, Curr. Med. Chem. 19 (2012), pp. 1921–1945.
  • R.A. Johnson and D.W. Wichern, Applied Multivariate Statistical Analysis, 6th ed., Prentice Hall, Englewood Cliffs, New Jersey, 2006.
  • M.P. Gonzalez, C. Teran, L. Saiz-Urra, and M. Teijeira, Variable selection methods in QSAR: An overview, Curr. Top. Med. Chem. 18 (2008), pp. 1606–1627.
  • H. Pizova, M. Havelkova, S. Stepankova, A. Bak, T. Kauerova, V. Kozik, M. Oravec, A. Imramovsky, P. Kollar, P. Bobal, and J. Jampilek, Proline-based carbamates as cholinesterase inhibitors, Molecules 14 (2017), pp. 1969–1995.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.