2,728
Views
11
CrossRef citations to date
0
Altmetric
Articles

Evaluation and improvement of QSAR predictions of skin sensitization for pesticides

, , , &
Pages 823-846 | Received 22 Jun 2018, Published online: 25 Sep 2018

References

  • OECD, The adverse outcome pathway for skin sensitisation initiated by covalent binding to proteins; Part 1: Scientific evidence, OECD, Paris, France, 2012.
  • J.D. Bos and M.M. Meinardi, The 500 Dalton rule for the skin penetration of chemical compounds and drugs, Exp. Dermatol. 9 (2000), pp. 165–169.
  • T. Luechtefeld, A. Maertens, D.P. Russo, C. Rovida, H. Zhu, and T. Hartung, Analysis of publically available skin sensitization data from REACH registrations 2008–2014, Altex 33 (2016), pp. 135–148.
  • D.A. Basketter and I. Kimber, Allergic contact dermatitis: Is the reactive chemistry of skin sensitizers the whole story?, Contact Dermatitis 68 (2013), pp. 244–245.
  • J.P. Thyssen, A. Linneberg, T. Menne, and J.D. Johansen, The epidemiology of contact allergy in the general population–prevalence and main findings, Contact Dermatitis 57 (2007), pp. 287–299.
  • T.L. Diepgen, Occupational skin-disease data in Europe, Int. Arch. Occup. Environ. Health 76 (2003), pp. 331–338.
  • C.E. Irby, B.A. Yentzer, Q.M. Vallejos, T.A. Arcury, S.A. Quandt, and S.R. Feldman, The prevalence and possible causes of contact dermatitis in farmworkers, Int. J. Dermatol. 48 (2009), pp. 1166–1170.
  • J.L. Del Prado-Lu, Insecticide residues in soil, water, and eggplant fruits and farmers’ health effects due to exposure to pesticides, Environ. Health Prevent. Med. 20 (2015), pp. 53–62.
  • D.P. Bruynzeel and W.G. Vanketel, Contact-dermatitis due to chlorothalonil in floriculture, Contact Dermatitis 14 (1986), pp. 67–68.
  • C. Liden, Facial dermatitis caused by chlorothalonil in a paint, Contact Dermatitis 22 (1990), pp. 206–211.
  • C.J.W. Vanginkel and N.N. Sabapathy, Allergic contact-dermatitis from the newly introduced fungicide fluazinam, Contact Dermatitis 32 (1995), pp. 160–162.
  • European Community, Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC, Official Journal of the European Union 309 (2009), pp. 1–50. Available at: http://data.europa.eu/eli/reg/2009/1107/oj.
  • European Community, Commission Regulation (EU) No 283/2013 of 1 March 2013 setting out the data requirements for active substances, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market (1), Official Journal of the European Union 93 (2013), pp. 1–84.
  • OECD, Test No. 406: Skin Sensitisation, OECD, Paris, France, 1992.
  • OECD, Test No. 429: Skin Sensitisation, OECD, Paris, France, 2010.
  • European Community, Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products (Text with EEA relevance), Official Journal of the European Union 342 (2009), pp. 152–302. Available at: http://data.europa.eu/eli/reg/2009/1223/oj.
  • W.M.S. Russell and R.L. Burch, The principles of humane experimental technique, Vol. 1, Methuen, London, 1959.
  • IGHRC, Predictive approaches to chemical hazard identification and characterisation: Current use by UK Government Departments and Agencies, IGHRC ed., Institute of Environment and Health, Cranfield University, UK, 2013.
  • E. Benfenati, A. Manganaro, and G. Gini, VEGA software download. Available at: http://www.vega-qsar.eu/download.html, 2013.
  • DTU, Danish (Q)SAR Database access, DTU, Lyngby, Denmark, 2016. Available at: http://qsardb.food.dtu.dk/db/index.html.
  • Toxtree, Software download, IDEA consult, Bourgas, Bulgaria, 2015. Available at: https://sourceforge.net/projects/toxtree/.
  • OECD QSAR Toolbox for grouping chemicals into categories, OECD, Paris, France, 2016, https://www.QSARtoolbox.org/.
  • G.R. Verheyen, E. Braeken, K. Van Deun, and S. Van Miert, Evaluation of in silico tools to predict the skin sensitization potential of chemicals, SAR QSAR Environ. Res. 28 (2017), pp. 59–73.
  • J.M. Fitzpatrick, D.W. Roberts, and G. Patlewicz, An evaluation of selected (Q)SARs/expert systems for predicting skin sensitisation potential, SAR QSAR Environ. Res. 29 (2018), pp. 439–468.
  • S.J. Canipa, M.L. Chilton, R. Hemingway, D.S. Macmillan, A. Myden, J.P. Plante, R.E. Tennant, J.D. Vessey, T. Steger-Hartmann, J. Gould, J. Hillegass, S. Etter, B.P.C. Smith, A. White, P. Sterchele, A. De Smedt, D. O’Brien, and R. Parakhia, A quantitative in silico model for predicting skin sensitization using a nearest neighbours approach within expert-derived structure-activity alert spaces, J. Appl. Toxicol. 37 (2017), pp. 985–995.
  • G.F. Gerberick, C.A. Ryan, P.S. Kern, H. Schlatter, R.J. Dearman, I. Kimber, G.Y. Patlewicz, and D.A. Basketter, Compilation of historical local lymph node data for evaluation of skin sensitization alternative methods, Dermatitis 16 (2005), pp. 157–202.
  • W. Teubner, A. Mehling, P.X. Schuster, K. Guth, A. Worth, J. Burton, B. van Ravenzwaay, and R. Landsiedel, Computer models versus reality: How well do in silico models currently predict the sensitization potential of a substance, Regul. Toxicol. Pharmacol. 67 (2013), pp. 468–485.
  • ECHA, Practical Guide 5 How to use and report (Q)SARs, European Chemicals Agency, Helsinki, Finland,  March 2016.
  • Q. Chaudhry, N. Piclin, J. Cotterill, M. Pintore, N.R. Price, J.R. Chrétien, and A. Roncaglioni, Global QSAR models of skin sensitisers for regulatory purposes, Chem. Cent. J. 4 (2010), pp. 1–6.
  • DTU, Danish QSAR database User manual, DTU, Lyngby, Denmark, 2016 Available at: http://qsardb.food.dtu.dk/Danish_QSAR_Database_Draft_User_manual.pdf.
  • S.J. Enoch, J.C. Madden, and M.T. Cronin, Identification of mechanisms of toxic action for skin sensitisation using a SMARTS pattern based approach, SAR QSAR Environ. Res. 19 (2008), pp. 555–578.
  • F. Frenzel, T. Buhrke, I. Wenzel, J. Andrack, J. Hielscher, and A. Lampen, Use of in silico models for prioritization of heat-induced food contaminants in mutagenicity and carcinogenicity testing, Arch. Toxicol. 99 (2017), pp. 3157–3174.
  • J.V. Cotterill, M.Q. Chaudhry, W. Matthews, and R.W. Watkins, In silico assessment of toxicity of heat-generated food contaminants, Food Chem. Toxicol. 46 (2008), pp. 1905–1918.
  • OECD, Step-by-step example on how to predict the skin sensitisation potential of a chemical by read-across based on an analogue approach, OECD, Paris, France, 2015. Available at: http://www.oecd.org/env/ehs/risk-assessment/Tutorial_1_TB%203.3_SkinSens%20ReadAcross.pdf.
  • D. Basketter, J. Crozier, B. Hubesch, I. Manou, A. Mehling, and J. Scheel, Optimised testing strategies for skin sensitization–the LLNA and beyond, Regul. Toxicol. Pharmacol. 64 (2012), pp. 9–16.
  • G.Y. Patlewicz and A. Worth, Review of data sources, QSARs and integrated testing strategies for skin sensitisation, JRC Scientific & Technical Report, Luxembourg, 2008.
  • M.T. Cronin and D.A. Basketter, Multivariate QSAR analysis of a skin sensitization database, SAR QSAR Environ. Res. 2 (1994), pp. 159–179.
  • C. Graham, R. Gealy, O.T. Macina, M.H. Karol, and H.S. Rosenkranz, QSAR for allergic contact dermatitis, Quant. Struct.-Act. Relat. 15 (1996), pp. 224–229.
  • E. Schlede, W. Aberer, T. Fuchs, I. Gerner, H. Lessmann, T. Maurer, R. Rossbacher, G. Stropp, E. Wagner, and D. Kayser, Chemical substances and contact allergy–244 substances ranked according to allergenic potency, Toxicology 193 (2003), pp. 219–259.
  • D. Kayser and E. Schlede, Chemikalien und Kontaktallergie - Eine bewertende Zusammenstellung, Verlag Urban & Vogel, München, Germany, 2001.
  • J. Ashby, D.A. Basketter, D. Paton, and I. Kimber, Structure activity relationships in skin sensitization using the murine local lymph node assay, Toxicology 103 (1995), pp. 177–194.
  • G.F. Gerberick, C.A. Ryan, P.S. Kern, R.J. Dearman, I. Kimber, G.Y. Patlewicz, and D.A. Basketter, A chemical dataset for evaluation of alternative approaches to skin-sensitization testing, Contact Dermatitis 50 (2004), pp. 274–288.
  • E. Estrada, G. Patlewicz, M. Chamberlain, D. Basketter, and S. Larbey, Computer-aided knowledge generation for understanding skin sensitization mechanisms: The TOPS-MODE approach, Chem. Res. Toxicol. 16 (2003), pp. 1226–1235.
  • C. Bauch, S.N. Kolle, E. Fabian, C. Pachel, T. Ramirez, B. Wiench, C.J. Wruck, B. van Ravenzwaay, and R. Landsiedel, Intralaboratory validation of four in vitro assays for the prediction of the skin sensitizing potential of chemicals, Toxicol. In Vitro 25 (2011), pp. 1162–1168.
  • I.R. Jowsey, D.A. Basketter, C. Westmoreland, and I. Kimber, A future approach to measuring relative skin sensitising potency: A proposal, J. Appl. Toxicol. 26 (2006), pp. 341–350.
  • J.S. Jaworska, A. Natsch, C. Ryan, J. Strickland, T. Ashikaga, and M. Miyazawa, Bayesian integrated testing strategy (ITS) for skin sensitization potency assessment: A decision support system for quantitative weight of evidence and adaptive testing strategy, Arch. Toxicol. 89 (2015), pp. 2355–2383.
  • J. Strickland, Q. Zang, N. Kleinstreuer, M. Paris, D.M. Lehmann, N. Choksi, J. Matheson, A. Jacobs, A. Lowit, D. Allen, and W. Casey, Integrated decision strategies for skin sensitization hazard, J. Appl. Toxicol. 36 (2016), pp. 1150–1162.
  • C. Bauch, S.N. Kolle, T. Ramirez, T. Eltze, E. Fabian, A. Mehling, W. Teubner, B. van Ravenzwaay, and R. Landsiedel, Putting the parts together: Combining in vitro methods to test for skin sensitizing potentials, Regul. Toxicol. Pharmacol. 63 (2012), pp. 489–504.
  • European Community, Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC, Official Journal of the European Union 396 (2006), pp. 1–849. Available at: http://data.europa.eu/eli/reg/2006/1907/oj.
  • European Community, Commission Regulation (EU) 2017/706 of 19 April 2017 amending Annex VII to Regulation (EC) No 1907/2006 of the European Parliament and of the Council on the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as regards skin sensitisation and repealing Commission Regulation (EU) 2016/1688 (Text with EEA relevance), Official Journal of the European Union 104 (2017), pp. 8–11. Available at: http://data.europa.eu/eli/reg/2017/706/oj.
  • J. Ezendam, H.M. Braakhuis, and R.J. Vandebriel, State of the art in non-animal approaches for skin sensitization testing: From individual test methods towards testing strategies, Arch. Toxicol. 90 (2016), pp. 2861–2883.
  • OECD, Guidance Document on the Validation of (Quantitative) Structure-Activity Relationship [(Q)SAR] Models, OECD, 2007.
  • E. Benfenati, S. Pardoe, T. Martin, R. Gonella Diaza, A. Lombardo, A. Manganaro, and A. Gissi, Using toxicological evidence from QSAR models in practice, Altex 30 (2013), pp. 19–40.
  • A. Rybacka, C. Ruden, and P.L. Andersson, On the use of in silico tools for prioritising toxicity testing of the low-volume industrial chemicals in REACH, Basic Clin. Pharmacol. Toxicol. 115 (2014), pp. 77–87.
  • M.T. Cronin, J.C. Dearden, J.D. Walker, and A.P. Worth, Quantitative structure-activity relationships for human health effects: Commonalities with other endpoints, Environ. Toxicol. Chem. 22 (2003), pp. 1829–1843.
  • OECD, Guidance Document on the Reporting of Defined Approaches and Individual Information Sources to be Used within Integrated Approaches to Testing and Assessment (IATA) for Skin Sensitisation, OECD Series on Testing & Assessment 256 (2017), pp. 1–317.