324
Views
10
CrossRef citations to date
0
Altmetric
Articles

Performance evaluation of the GastroPlusTM software tool for prediction of the toxicokinetic parameters of chemicals

, , , , , , & show all
Pages 875-893 | Received 02 Jul 2018, Accepted 30 Aug 2018, Published online: 05 Oct 2018

References

  • S. Alqahtani, In silico ADME-Tox modeling: Progress and prospects, Expert Opin. Drug Metab. Toxicol. 13 (2017), pp. 1147–1158.
  • D.A. Smith and R.S. Obach, Metabolites in safety testing (MIST): Considerations of mechanisms of toxicity with dose, abundance, and duration of treatment, Chem. Res. Toxicol. 22 (2009), pp. 267–279.
  • S. Coecke, O. Pelkonen, S.B. Leite, U. Bernauer, J.G. Bessems, F.Y. Bois, U. Gundert-Remy, G. Loizou, E. Testai, and J.M. Zaldivar, Toxicokinetics as a key to the integrated toxicity risk assessment based primarily on non-animal approaches, Toxicol. In Vitro 27 (2013), pp. 1570–1577.
  • A. Punt, A. Peijnenburg, R. Hoogenboom, and H. Bouwmeester, Non-animal approaches for toxicokinetics in risk evaluations of food chemicals, ALTEX 34 (2017), pp. 501–514.
  • Y. Wang, J. Xing, Y. Xu, N. Zhou, J. Peng, Z. Xiong, X. Liu, X. Luo, C. Luo, K. Chen, M. Zheng, and H. Jiang, In silico ADME/T modelling for rational drug design, Q. Rev. Biophys. 48 (2015), pp. 488–515.
  • F. Cheng, W. Li, G. Liu, and Y. Tang, In silico ADMET prediction: Recent advances, current challenges and future trends, Curr. Top Med. Chem. 13 (2013), pp. 1273–1289.
  • L.C. Bell and J. Wang, Probe ADME and test hypotheses: A PATH beyond clearance in vitro-in vivo correlations in early drug discovery, Expert Opin. Drug Metab. Toxicol. 8 (2012), pp. 1131–1155.
  • A. Tarcsay and G.M. Keseru, In silico site of metabolism prediction of cytochrome P450-mediated biotransformations, Expert Opin. Drug Metab. Toxicol. 7 (2011), pp. 299–312.
  • T. Geerts and Y. Vander Heyden, In silico predictions of ADME-Tox properties: Drug absorption, Comb. Chem. High Throughput Screen. 14 (2011), pp. 339–361.
  • F. Yamashita and M. Hashida, In silico approaches for predicting ADME properties of drugs, Drug Metab. Pharmacokinet. 19 (2004), pp. 327–338.
  • L. Zhu, Y. Zhang, J. Yang, Y. Wang, J. Zhang, Y. Zhao, and W. Dong, Prediction of the pharmacokinetics and tissue distribution of levofloxacin in humans based on an extrapolated PBPK model, Eur. J. Drug Metab. Pharmacokinet. 41 (2016), pp. 395–402.
  • E. Sjogren, H. Thorn, and C. Tannergren, In silico modeling of gastrointestinal drug absorption: Predictive performance of three physiologically based absorption models, Mol. Pharm. 13 (2016), pp. 1763–1778.
  • S. Hansmann, A. Darwich, A. Margolskee, L. Aarons, and J. Dressman, Forecasting oral absorption across biopharmaceutics classification system classes with physiologically based pharmacokinetic models, J. Pharm. Pharmacol. 68 (2016), pp. 1501–1515.
  • N. Gobeau, R. Stringer, S. De Buck, T. Tuntland, and B. Faller, Evaluation of the Gastroplus advanced compartmental and transit (ACAT) model in early discovery, Pharm. Res. 33 (2016), pp. 2126–2139.
  • Y. Yang, P. Manda, N. Pavurala, M.A. Khan, and Y.S. Krishnaiah, Development and validation of in vitro-in vivo correlation (IVIVC) for estradiol transdermal drug delivery systems, J. Control. Release 210 (2015), pp. 58–66.
  • A. Nordmark, A. Andersson, P. Baranczewski, E. Wanag, and L. Stahle, Assessment of interaction potential of AZD2066 using in vitro metabolism tools, physiologically based pharmacokinetic modelling and in vivo cocktail data, Eur. J. Clin. Pharmacol. 70 (2014), pp. 167–178.
  • K.L. Gill, I. Gardner, L. Li, and M. Jamei, A bottom-up whole-body physiologically based pharmacokinetic model to mechanistically predict tissue distribution and the rate of subcutaneous absorption of therapeutic proteins, AAPS J. 18 (2016), pp. 156–170.
  • K. Abduljalil, M. Jamei, A. Rostami-Hodjegan, and T.N. Johnson, Changes in individual drug-independent system parameters during virtual paediatric pharmacokinetic trials: Introducing time-varying physiology into a paediatric PBPK model, AAPS J. 16 (2014), pp. 568–576.
  • A. Margolskee, A.S. Darwich, X. Pepin, S.M. Pathak, M.B. Bolger, L. Aarons, A. Rostami-Hodjegan, J. Angstenberger, F. Graf, L. Laplanche, T. Muller, S. Carlert, P. Daga, D. Murphy, C. Tannergren, M. Yasin, S. Greschat-Schade, W. Muck, U. Muenster, D. van der Mey, K.J. Frank, R. Lloyd, L. Adriaenssen, J. Bevernage, L. De Zwart, D. Swerts, C. Tistaert, A. Van Den Bergh, A. Van Peer, S. Beato, A.T. Nguyen-Trung, J. Bennett, M. McAllister, M. Wong, P. Zane, C. Ollier, P. Vicat, M. Kolhmann, A. Marker, P. Brun, F. Mazuir, S. Beilles, M. Venczel, X. Boulenc, P. Loos, H. Lennernas, and B. Abrahamsson, IMI - oral biopharmaceutics tools project - evaluation of bottom-up PBPK prediction success part 1: Characterisation of the OrBiTo database of compounds, Eur. J. Pharm. Sci. 96 (2017), pp. 598–609.
  • A. Margolskee, A.S. Darwich, X. Pepin, L. Aarons, A. Galetin, A. Rostami-Hodjegan, S. Carlert, M. Hammarberg, C. Hilgendorf, P. Johansson, E. Karlsson, D. Murphy, C. Tannergren, H. Thorn, M. Yasin, F. Mazuir, O. Nicolas, S. Ramusovic, C. Xu, S.M. Pathak, T. Korjamo, J. Laru, J. Malkki, S. Pappinen, J. Tuunainen, J. Dressman, S. Hansmann, E. Kostewicz, H. He, T. Heimbach, F. Wu, C. Hoft, L. Laplanche, Y. Pang, M.B. Bolger, E. Huehn, V. Lukacova, J.M. Mullin, K.X. Szeto, C. Costales, J. Lin, M. McAllister, S. Modi, C. Rotter, M. Varma, M. Wong, A. Mitra, J. Bevernage, J. Biewenga, A. Van Peer, R. Lloyd, C. Shardlow, P. Langguth, I. Mishenzon, M.A. Nguyen, J. Brown, H. Lennernas, B. and Abrahamsson, IMI - Oral biopharmaceutics tools project - Evaluation of bottom-up PBPK prediction success part 2: An introduction to the simulation exercise and overview of results, Eur. J. Pharm. Sci. 96 (2017), pp. 610–625.
  • A.S. Darwich, A. Margolskee, X. Pepin, L. Aarons, A. Galetin, A. Rostami-Hodjegan, S. Carlert, M. Hammarberg, C. Hilgendorf, P. Johansson, E. Karlsson, D. Murphy, C. Tannergren, H. Thorn, M. Yasin, F. Mazuir, O. Nicolas, S. Ramusovic, C. Xu, S.M. Pathak, T. Korjamo, J. Laru, J. Malkki, S. Pappinen, J. Tuunainen, J. Dressman, S. Hansmann, E. Kostewicz, H. He, T. Heimbach, F. Wu, C. Hoft, Y. Pang, M.B. Bolger, E. Huehn, V. Lukacova, J.M. Mullin, K.X. Szeto, C. Costales, J. Lin, M. McAllister, S. Modi, C. Rotter, M. Varma, M. Wong, A. Mitra, J. Bevernage, J. Biewenga, A. Van Peer, R. Lloyd, C. Shardlow, P. Langguth, I. Mishenzon, M.A. Nguyen, J. Brown, H. Lennernas, and B. Abrahamsson, IMI - Oral biopharmaceutics tools project - Evaluation of bottom-up PBPK prediction success part 3: Identifying gaps in system parameters by analysing In Silico performance across different compound classes, Eur. J. Pharm. Sci. 96 (2017), pp. 626–642.
  • J. Mao, T.R. Johnson, Z. Shen, and S. Yamazaki, Prediction of crizotinib-midazolam interaction using the Simcyp population-based simulator: Comparison of CYP3A time-dependent inhibition between human liver microsomes versus hepatocytes, Drug Metab. Dispos. 41 (2013), pp. 343–352.
  • G. Allan, J. Davis, M. Dickins, I. Gardner, T. Jenkins, H. Jones, R. Webster, and H. Westgate, Pre-clinical pharmacokinetics of UK-453,061, a novel non-nucleoside reverse transcriptase inhibitor (NNRTI), and use of in silico physiologically based prediction tools to predict the oral pharmacokinetics of UK-453,061 in man, Xenobiotica 38 (2008), pp. 620–640.
  • S. Grbic, J. Parojcic, S. Ibric, and Z. Djuric, In vitro-in vivo correlation for gliclazide immediate-release tablets based on mechanistic absorption simulation, AAPS Pharm. Sci. Tech. 12 (2011), pp. 165–171.
  • S. Honorio Tda, E.C. Pinto, H.V. Rocha, V.S. Esteves, T.C. dos Santos, H.C. Castro, C.R. Rodrigues, V.P. de Sousa, and L.M. Cabral, In vitro-in vivo correlation of efavirenz tablets using GastroPlus(R), AAPS Pharm. Sci. Tech. 14 (2013), pp. 1244–1254.
  • N.A. Hosea and H.M. Jones, Predicting pharmacokinetic profiles using in silico derived parameters, Mol. Pharm. 10 (2013), pp. 1207–1215.
  • V. Lukacova, W.S. Woltosz, and M.B. Bolger, Prediction of modified release pharmacokinetics and pharmacodynamics from in vitro, immediate release, and intravenous data, AAPS J. 11 (2009), pp. 323–334.
  • E.L. Reyner, S. Sevidal, M.A. West, A. Clouser-Roche, S. Freiwald, K. Fenner, M. Ullah, C.A. Lee, and B.J. Smith, In vitro characterization of axitinib interactions with human efflux and hepatic uptake transporters: Implications for disposition and drug interactions, Drug Metab. Dispos. 41 (2013), pp. 1575–1583.
  • F. Sun, L. Lee, Z. Zhang, X. Wang, Q. Yu, X. Duan, and E. Chan, Preclinical pharmacokinetic studies of 3-deazaneplanocin A, a potent epigenetic anticancer agent, and its human pharmacokinetic prediction using GastroPlus, Eur. J Pharm. Sci. 77 (2015), pp. 290–302.
  • NIH database, https://chem.nlm.nih.gov/chemidplus/.
  • N.S. Sipes, J.F. Wambaugh, R. Pearce, S.S. Auerbach, B.A. Wetmore, J.H. Hsieh, A.J. Shapiro, D. Svoboda, M.J. DeVito, and S.S. Ferguson, An intuitive approach for predicting potential human health risk with the tox21 10k library, Environ. Sci. Technol. 51 (2017), pp. 10786–10796.
  • N. Aubert, T. Ameller, and J.J. Legrand, Systemic exposure to parabens: Pharmacokinetics, tissue distribution, excretion balance and plasma metabolites of [14C]-methyl-, propyl- and butylparaben in rats after oral, topical or subcutaneous administration, Food Chem. Toxicol. 50 (2012), pp. 445–454.
  • BASF, 14C-Protectol PE (Phenoxyethanol)-Study on the Biokinetics in Rats, BASF study report (2007).
  • B.K. Bernard, K. Ubukata, R. Mihara, Y. Sato, and H. Nemoto, Studies of the toxicological potential of capsinoids, XI: Pharmacokinetic and tissue distribution study of 14C-dihydrocapsiate and metabolites in rats, Int. J. Toxicol. 29 (2010), pp. 3S–14S.
  • N. Chen, L. Wen, H. Lau, S. Surapaneni, and G. Kumar, Pharmacokinetics, metabolism and excretion of [(14)C]-lenalidomide following oral administration in healthy male subjects, Cancer Chemother. Pharmacol. 69 (2012), pp. 789–797.
  • The Dow Chemical Company, Pharmacokinetics, metabolism and distribution of 14C-Phenol in Fischer 344 rats after gavage, drinking water and inhalation exposure, Dow Study Report (1994).
  • P.T. Daley-Yates, A.C. Price, J.R. Sisson, A. Pereira, and N. Dallow, Beclomethasone dipropionate: Absolute bioavailability, pharmacokinetics and metabolism following intravenous, oral, intranasal and inhaled administration in man, Br. J. Clin. Pharmacol. 51 (2001), pp. 400–409.
  • H. Derendorf, G. Hochhaus, S. Rohatagi, H. Mollmann, J. Barth, H. Sourgens, and M. Erdmann, Pharmacokinetics of triamcinolone acetonide after intravenous, oral, and inhaled administration, J. Clin. Pharmacol. 35 (1995), pp. 302–305.
  • S.W. Frantz, J.L. Beskitt, M.J. Tallant, L.A. Zourelias, and B. Ballantyne, Pharmacokinetics of ethylene glycol. III. Plasma disposition and metabolic fate after single increasing intravenous, peroral, or percutaneous doses in the male Sprague-Dawley rat, Xenobiotica 26 (1996), pp. 515–539.
  • S.A. Gannon, T. Johnson, D.L. Nabb, T.L. Serex, R.C. Buck, and S.E. Loveless, Absorption, distribution, metabolism, and excretion of [1-(1)(4)C]-perfluorohexanoate ([(1)(4)C]-PFHx) in rats and mice, Toxicology 283 (2011), pp. 55–62.
  • J. Gong, J. Gan, J. Caceres-Cortes, L.J. Christopher, V. Arora, E. Masson, D. Williams, J. Pursley, A. Allentoff, M. Lago, S.B. Tran, and R.A. Iyer, Metabolism and disposition of [14C]brivanib alaninate after oral administration to rats, monkeys, and humans, Drug Metab. Dispos. 39 (2011), pp. 891–903.
  • T. Green, C. Swain, J.P. Van Miller, and R.L. Joiner, Absorption, bioavailability, and metabolism of para-nonylphenol in the rat, Regul. Toxicol. Pharmacol. 38 (2003), pp. 43–51.
  • M. Hoch, J. Wank, I. Kluge, W. Wagner-Redeker, and J. Dingemanse, Disposition and metabolism of setipiprant, a selective oral CRTH2 antagonist, in humans, Drugs R. D. 13 (2013), pp. 253–269.
  • M. Hoffmann, C. Kasserra, J. Reyes, P. Schafer, J. Kosek, L. Capone, A. Parton, H. Kim-Kang, S. Surapaneni, and G. Kumar, Absorption, metabolism and excretion of [14C]pomalidomide in humans following oral administration, Cancer Chemother. Pharmacol. 71 (2013), pp. 489–501.
  • L. Jia, P.E. Noker, L. Coward, G.S. Gorman, M. Protopopova, and J.E. Tomaszewski, Interspecies pharmacokinetics and in vitro metabolism of SQ109, Br. J. Pharmacol. 147 (2006), pp. 476–485.
  • G.A. Knudsen, J.M. Sanders, A.M. Sadik, and L.S. Birnbaum, Disposition and kinetics of tetrabromobisphenol a in female Wistar Han rats, Toxicol. Rep. 1 (2014), pp. 214–223.
  • P. Martin, S. Oliver, S.J. Kennedy, E. Partridge, M. Hutchison, D. Clarke, and P. Giles, Pharmacokinetics of vandetanib: Three phase I studies in healthy subjects, Clin. Ther. 34 (2012), pp. 221–237.
  • S.A. Saghir, A.J. Clark, E.L. McClymont, and J.L. Staley, Pharmacokinetics of aminomethylpropanol in rats following oral and a novel dermal study design, Food Chem. Toxicol. 46 (2008), pp. 678–687.
  • J.M. Sauer, J. Bao, R.L. Smith, T.D. McClure, M. Mayersohn, U. Pillai, M.L. Cunningham, and I.G. Sipes, Absorption, disposition kinetics, and metabolic pathways of cyclohexene oxide in the male Fischer 344 rat and female B6C3F1 mouse, Drug Metab. Dispos. 25 (1997), pp. 371–378.
  • S. Takusagawa, J.J. van Lier, K. Suzuki, M. Nagata, J. Meijer, W. Krauwinkel, M. Schaddelee, M. Sekiguchi, A. Miyashita, T. Iwatsubo, M. van Gelderen, and T. Usui, Absorption, metabolism and excretion of [(14)C]mirabegron (YM178), a potent and selective beta(3)-adrenoceptor agonist, after oral administration to healthy male volunteers, Drug Metab. Dispos. 40 (2012), pp. 815–824.
  • K.A. Thayer, D.R. Doerge, D. Hunt, S.H. Schurman, N.C. Twaddle, M.I. Churchwell, S. Garantziotis, G.E. Kissling, M.R. Easterling, J.R. Bucher, and L.S. Birnbaum, Pharmacokinetics of bisphenol A in humans following a single oral administration, Environ. Int. 83 (2015), pp. 107–115.
  • D.K. Yu, W.F. Elmquist, and R.J. Sawchuk, Pharmacokinetics of propylene glycol in humans during multiple dosing regimens, J. Pharm. Sci. 74 (1985), pp. 876–879.
  • P.J. Anderson, X. Zhou, P. Breen, L. Gann, T.W. Logsdon, C.M. Compadre, and F.C. Hiller, Pharmacokinetics of (R,S)-Albuterol after aerosol inhalation in healthy adult volunteers, J. Pharm. Sci. 87 (1998), pp. 841–844.
  • D. Argenti, B. Shah, and D. Heald, A pharmacokinetic study to evaluate the absolute bioavailability of triamcinolone acetonide following inhalation administration, J. Clin. Pharmacol. 39 (1999), pp. 695–702.
  • H. Ishizuka, S. Yoshiba, H. Okabe, and K. Yoshihara, Clinical pharmacokinetics of laninamivir, a novel long-acting neuraminidase inhibitor, after single and multiple inhaled doses of its prodrug, CS-8958, in healthy male volunteers, J. Clin. Pharmacol. 50 (2010), pp. 1319–1329.
  • K.M. Jones, E. Liao, K. Hohneker, S. Turpin, M.M. Henry, K. Selinger, P.H. Hsyu, R.C. Boucher, M.R. Knowles, and G.E. Dukes, Pharmacokinetics of amiloride after inhalation and oral administration in adolescents and adults with cystic fibrosis, Pharmacotherapy 17 (1997), pp. 263–270.
  • V. Lukacova, Simulation of tobramycin pharmacokinetics after pulmonary administration, 37th Annual Meeting and Exposition of the Controlled Release Society, Portland, OR. July 10–14, 2010.
  • A.M. Api, G. Ritacco, and D.R. Hawkins, The fate of dermally applied [14C]d-limonene in rats and humans, Int. J. Toxicol. 32 (2013), pp. 130–135.
  • D.R. Brocks, A.W. Meikle, S.C. Boike, N.A. Mazer, N. Zariffa, P.R. Audet, and D.K. Jorkasky, Pharmacokinetics of testosterone in hypogonadal men after transdermal delivery: Influence of dose, J. Clin. Pharmacol. 36 (1996), pp. 732–739.
  • R.A. Ford, D.R. Hawkins, B.C. Mayo, and A.M. Api, The in vivo dermal absorption and metabolism of [4-14C] coumarin by rats and by human volunteers under simulated conditions of use in fragrances, Food Chem. Toxicol. 39 (2001), pp. 153–162.
  • A. Fujimura, A. Ebihara, T. Shiga, Y. Kumagai, K. Oapihashi, H. Nakashima, and T. Kotegawa, Pharmacokinetics and pharmacodynamics of a new transdermal clonidine, M-5041T, in healthy subjects, J. Clin. Pharmacol. 33 (1993), pp. 1192–1200.
  • Y.H. Kim, H.Y. Choi, H.S. Lim, S.H. Lee, H.S. Jeon, D. Hong, S.S. Kim, Y.K. Choi, and K.S. Bae, Single dose pharmacokinetics of the novel transdermal donepezil patch in healthy volunteers, Drug Des. Devel. Ther. 9 (2015), pp. 1419–1426.
  • G. Lefevre, G. Sedek, H.L. Huang, M. Saltzman, M. Rosenberg, B. Kiese, and P. Fordham, Pharmacokinetics of a rivastigmine transdermal patch formulation in healthy volunteers: Relative effects of body site application, J. Clin. Pharmacol. 47 (2007), pp. 471–478.
  • D. Martin, J. Valdez, J. Boren, and M. Mayersohn, Dermal absorption of camphor, menthol, and methyl salicylate in humans, J. Clin. Pharmacol. 44 (2004), pp. 1151–1157.
  • M.V. Miles, R. Balasubramanian, A.W. Pittman, S.H. Grossman, K.A. Pappa, M.F. Smith, W.A. Wargin, J.W. Findlay, R.I. Poust, and M.F. Frosolono, Pharmacokinetics of oral and transdermal triprolidine, J. Clin. Pharmacol. 30 (1990), pp. 572–575.
  • S. Selim, R.E. Hartnagel, Jr., T.G. Osimitz, K.L. Gabriel, and G.P. Schoenig, Absorption, metabolism, and excretion of N,N-diethyl-m-toluamide following dermal application to human volunteers, Fundam. Appl. Toxicol. 25 (1995), pp. 95–100.
  • C. Timchalk, S. Selim, G. Sangha, and M.J. Bartels, The pharmacokinetics and metabolism of 14C/13C-labeled ortho-phenylphenol formation following dermal application to human volunteers, Hum. Exp. Toxicol. 17 (1998), pp. 411–417.
  • R.C. Wester, X. Hui, and H.I. Maibach, In vivo human transfer of topical bioactive drug between individuals: Estradiol, J. Invest. Dermatol. 126 (2006), pp. 2190–2193.
  • B.A. Wetmore, J.F. Wambaugh, B. Allen, S.S. Ferguson, M.A. Sochaski, R.W. Setzer, K.A. Houck, C.L. Strope, K. Cantwell, R.S. Judson, E. LeCluyse, H.J. Clewell, R.S. Thomas, and M.E. Andersen, Incorporating High-throughput exposure predictions with dosimetry-adjusted in vitro bioactivity to inform chemical toxicity testing, Toxicol. Sci. 148 (2015), pp. 121–136.
  • B.A. Wetmore, J.F. Wambaugh, S.S. Ferguson, M.A. Sochaski, D.M. Rotroff, K. Freeman, H.J. Clewell, 3rd, D.J. Dix, M.E. Andersen, K.A. Houck, B. Allen, R.S. Judson, R. Singh, R.J. Kavlock, A.M. Richard, and R.S. Thomas, Integration of dosimetry, exposure, and high-throughput screening data in chemical toxicity assessment, Toxicol. Sci. 125 (2012), pp. 157–174.
  • A.L. Ungell, S. Nylander, S. Bergstrand, A. Sjoberg, and H. Lennernas, Membrane transport of drugs in different regions of the intestinal tract of the rat, J. Pharm. Sci. 87 (1998), pp. 360–366.
  • S. Splus, Gastroplus simulation software for drug discovery and development version 9.0, Ed. Simulations Plus. 2016.
  • A.T. Lu, M.E. Frisella, and K.C. Johnson, Dissolution modeling: Factors affecting the dissolution rates of polydisperse powders, Pharm. Res. 10 (1993), pp. 1308–1314.
  • F.J. Jongeneelen and W.F. Berge, A generic, cross-chemical predictive PBTK model with multiple entry routes running as application in MS Excel; design of the model and comparison of predictions with experimental results, Ann. Occup. Hyg. 55 (2011), pp. 841–864.
  • J.D. Olie, J.G. Bessems, H.J. Clewell, 3rd, J. Meulenbelt, and C.C. Hunault, Evaluation of semi-generic PBTK modeling for emergency risk assessment after acute inhalation exposure to volatile hazardous chemicals, Chemosphere 132 (2015), pp. 47–55.
  • J.F. Wambaugh, M.F. Hughes, C.L. Ring, D.K. MacMillan, J. Ford, T.R. Fennell, S.R. Black, R.W. Snyder, N.S. Sipes, B.A. Wetmore, J. Westerhout, R.W. Setzer, R.G. Pearce, J.E. Simmons, and R.S. Thomas, Evaluating in vitro-in vivo extrapolation of toxicokinetics, Toxicol. Sci. 163 (2018), pp. 152–169.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.