149
Views
41
CrossRef citations to date
0
Altmetric
Articles

Prediction of the adsorption coefficients of some aromatic compounds on multi-wall carbon nanotubes by the Monte Carlo method

&
Pages 895-909 | Received 12 Jul 2018, Accepted 18 Sep 2018, Published online: 18 Oct 2018

References

  • H. Dai, Carbon nanotubes: Opportunities and challenges, Surf. Sci. 500 (2002), pp. 218–241.
  • A. Kharitonov, A. Tkachev, A. Blohin, T. Dyachkova, D. Kobzev, A. Maksimkin, A. Mostovoy, and L. Alekseiko, Reinforcement of bisphenol-F epoxy resin composites with fluorinated carbon nanotubes, Compos. Sci. Technol. 134 (2016), pp. 161–167.
  • N. Ouldhamadouche, A. Achour, K.A. Aissa, M. Islam, A. Ahmadpourian, A. Arman, M. Soussou, M. Chaker, L. Le Brizoual, and M. Djouadi, AlN film thickness effect on photoluminescence properties of AlN/carbon nanotubes shell/core nanostructures for deep ultra-violet optoelectronic devices, Thin Solid Films 622 (2017), pp. 23–28.
  • A. Grekova, L. Gordeeva, and Y. Aristov, Composite sorbents “Li/Ca halogenides inside multi-wall carbon nano-tubes” for thermal energy storage, Sol. Energy Mater. Sol. Cells 155 (2016), pp. 176–183.
  • M. Sreekanth, S. Ghosh, P. Biswas, S. Kumar, and P. Srivastava, Improved field emission from indium decorated multi-walled carbon nanotubes, Appl. Surf. Sci. 383 (2016), pp. 84–89.
  • R. Padash, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, M. Mirmotahari, H. Ehrlich, A. Rad, and M. Peyravi, Is it possible to use X12 Y12 (X = Al, B, and Y = N, P) nanocages for drug-delivery systems? A DFT study on the adsorption property of 4-aminopyridine drug, Appl. Phys. A 124 (2018), pp. 582–592.
  • Y. Ma, X.-L. Shen, Q. Zeng, H.-S. Wang, and L.-S. Wang, A multi-walled carbon nanotubes based molecularly imprinted polymers electrochemical sensor for the sensitive determination of HIV-p24, Talanta 164 (2017), pp. 121–127.
  • H. Peng, Q. Li, and T. Chen, Industrial Applications of Carbon Nanotubes, Elsevier, Amesterdam, 2017.
  • S. Deng, V.K. Upadhyayula, G.B. Smith, and M.C. Mitchell, Adsorption equilibrium and kinetics of microorganisms on single-wall carbon nanotubes, IEEE Sens. J. 8 (2008), pp. 954–962.
  • F.-f. Liu, J.-l. Fan, S.-g. Wang, and G.-h. Ma, Adsorption of natural organic matter analogues by multi-walled carbon nanotubes: Comparison with powdered activated carbon, Chem. Eng. J. 219 (2013), pp. 450–458.
  • C. Ye, Q.-M. Gong, F.-P. Lu, and J. Liang, Adsorption of uraemic toxins on carbon nanotubes, Sep. Purif. Technol. 58 (2007), pp. 2–6.
  • A.P. Toropova and A.A. Toropov, Assessment of nano-QSPR models of organic contaminant absorption by carbon nanotubes for ecological impact studies, Mater. Discov. 4 (2016), pp. 22–28.
  • Y. Patiño, E. Díaz, S. Ordóñez, E. Gallegos-Suarez, A. Guerrero-Ruiz, and I. Rodríguez-Ramos, Adsorption of emerging pollutants on functionalized multiwall carbon nanotubes, Chemosphere 136 (2015), pp. 174–180.
  • J. Rong, X. Rong, F. Qiu, X. Zhu, J. Pan, T. Zhang, and D. Yang, Facile preparation of glucose functionalized multi-wall carbon nanotubes and its application for the removal of cationic pollutants, Mater. Lett. 183 (2016), pp. 9–13.
  • Ö. Kerkez and Ş.S. Bayazit, Magnetite decorated multi-walled carbon nanotubes for removal of toxic dyes from aqueous solutions, J. Nanopart. Res. 16 (2014), pp. 2431–2441.
  • W. Liu, J. Yao, M. Cai, H. Chai, C. Zhang, J. Sun, R. Chandankere, and K. Masakorala, Synthesis of a novel nanopesticide and its potential toxic effect on soil microbial activity, J. Nanopart. Res. 16 (2014), pp. 2677–2689.
  • S. Ahmadi and E. Habibpour, Application of GA-MLR for QSAR modeling of the arylthioindole class of tubulin polymerization inhibitors as anticancer agents, anti-cancer agents, Med. Chem. 17 (2017), pp. 552–565.
  • S. Ahmadi, M.R. Khazaei, and A. Abdolmaleki, Quantitative structure–property relationship study on the intercalation of anticancer drugs with ct-DNA, Med. Chem. Res. 23 (2014), pp. 1148–1161.
  • S. Ahmadi, E. Babaee, and M.R. Khazaei, Application of self organizing maps and GA-MLR for the estimation of stability constant of 18-crown-6 ether derivatives with sodium cation, J. Incl. Phenom. Macrocycl. Chem. 79 (2014), pp. 141–149.
  • K. Yang, W. Wu, Q. Jing, and L. Zhu, Aqueous adsorption of aniline, phenol, and their substitutes by multi-walled carbon nanotubes, Environ. Sci. Technol. 42 (2008), pp. 7931–7936.
  • X.-R. Xia, N.A. Monteiro-Riviere, and J.E. Riviere, An index for characterization of nanomaterials in biological systems, Nat. Nanotech. 5 (2010), pp. 671–675.
  • Y. Liu, J. Zhang, X. Chen, J. Zheng, G. Wang, and G. Liang, Insights into the adsorption of simple benzene derivatives on carbon nanotubes, RSC Adv. 4 (2014), pp. 58036–58046.
  • O.G. Apul, P. Xuan, F. Luo, and T. Karanfil, Development of a 3D QSPR model for adsorption of aromatic compounds by carbon nanotubes: Comparison of multiple linear regression, artificial neural network and support vector machine, RSC Adv. 3 (2013), pp. 23924–23934.
  • M. Rahimi-Nasrabadi, R. Akhoondi, S.M. Pourmortazavi, and F. Ahmadi, Predicting adsorption of aromatic compounds by carbon nanotubes based on quantitative structure property relationship principles, J. Mol. Struct. 1099 (2015), pp. 510–515.
  • R. Todeschini, D. Ballabio, V. Consonni, A. Manganaro, and A. Mauri, Canonical measure of correlation (cmc) and canonical measure of distance (cmd) between sets of data. part 1. theory and simple chemometric applications, Anal. Chim. Acta, 648 (2009), pp. 45-51.
  • A. Heidari and M.H. Fatemi, Hybrid docking-nano-QSPR: An alternative approach for prediction of chemicals adsorption on nanoparticles, Nano 11 (2016), pp. 1650078.
  • A. Heidari and M.H. Fatemi, A theoretical approach to model and predict the adsorption coefficients of some small aromatic molecules on carbon nanotube, J. Chin. Chem. Soc. 64 (2017), pp. 289–295.
  • E. Benfenati, A.A. Toropov, A.P. Toropova, A. Manganaro, and R. Gonella Diaza, CORAL software: QSAR for anticancer agents, Chem. Biol. Drug Des. 77 (2011), pp. 471–476.
  • San Diego Biovia, CA, USA; http://accelrys.com/products/informatics/cheminformatics/draw/
  • A. Ghaedi, Predicting the cytotoxicity of ionic liquids using QSAR model based on SMILES optimal descriptors, J. Mol. Liq. 208 (2015), pp. 269–279.
  • A.A. Toropov and E. Benfenati, SMILES in QSPR/QSAR modeling: Results and perspectives, Curr. Drug Discov. Technol. 4 (2007), pp. 77–116.
  • S. Manganelli, C. Leone, A.A. Toropov, A.P. Toropova, and E. Benfenati, QSAR model for predicting cell viability of human embryonic kidney cells exposed to SiO2 nanoparticles, Chemosphere 144 (2016), pp. 995–1001.
  • A.A. Toropov and A.P. Toropova, From chemoinformatics to nanoinformatics: New tools for drug discovery and nanoparticles design in medicinal chemistry, Curr. Top. Med. Chem. 15 (2015), pp. 1767.
  • A. Toropova, A. Toropov, R. Rallo, D. Leszczynska, and J. Leszczynski, Nano-QSAR: Genotoxicity of multi-walled carbon nanotubes, Int. J. Environ. Res. 10 (2016), pp. 59–64.
  • J. Veselinović, G. Nikolić, N. Trutić, J. Živković, and A. Veselinović, Monte Carlo QSAR models for predicting organophosphate inhibition of acetycholinesterase, SAR QSAR Environ. Res. 26 (2015), pp. 449–460.
  • A. Kumar and S. Chauhan, Monte Carlo method based QSAR modelling of natural lipase inhibitors using hybrid optimal descriptors, SAR QSAR Environ. Res. 28 (2017), pp. 179–197.
  • S. Bhargava, N. Adhikari, S. Amin, K. Das, S. Gayen, and T. Jha, Hydroxyethylamine derivatives as HIV-1 protease inhibitors: A predictive QSAR modelling study based on Monte Carlo optimization, SAR QSAR Environ. Res. 28 (2017), pp. 973–990.
  • V. Prachayasittikul, A. Worachartcheewan, A.P. Toropova, A.A. Toropov, N. Schaduangrat, and C. Nantasenamat, Large-scale classification of P-glycoprotein inhibitors using SMILES-based descriptors, SAR QSAR Environ. Res. 28 (2017), pp. 1–16.
  • K. Roy, On some aspects of validation of predictive quantitative structure–activity relationship models, Expert Opin. Drug Discov. 2 (2007), pp. 1567–1577.
  • P.K. Ojha, I. Mitra, R.N. Das, and K. Roy, Further exploring metrics for validation of QSPR models, Chemom. Intell. Lab. Syst. 107 (2011), pp. 194–205.
  • P.K. Ojha and K. Roy, Development of a robust and validated 2D-QSPR model for sweetness potency of diverse functional organic molecules, Food Chem. Toxicol. 112 (2018), pp. 551–562.
  • P.P. Roy, J.T. Leonard, and K. Roy, Exploring the impact of size of training sets for the development of predictive QSAR models, Chemom. Intell. Lab. Syst. 90 (2008), pp. 31–42.
  • A. Golbraikh and A. Tropsha, Beware of q2!, J. Mol. Graph. Model. 20 (2002), pp. 269–276.
  • I. Mitra, A. Saha, and K. Roy, Exploring quantitative structure–activity relationship studies of antioxidant phenolic compounds obtained from traditional Chinese medicinal plants, Mol. Simulat. 36 (2010), pp. 1067–1079.
  • M.A. Toropova, A.A. Toropov, I. Raška Jr, and M. Rašková, Searching therapeutic agents for treatment of Alzheimer disease using the Monte Carlo method, Comput. Biol. Med. 64 (2015), pp. 148–154.
  • A.P. Toropova, A.A. Toropov, A.M. Veselinović, J.B. Veselinović, D. Leszczynska, and J. Leszczynski, Monte Carlo-based quantitative structure–activity relationship models for toxicity of organic chemicals to Daphnia magna, Environ. Toxicol. Chem. 35 (2016), pp. 2691–2697.
  • P.K. Ojha and K. Roy, Comparative QSARs for antimalarial endochins: Importance of descriptor-thinning and noise reduction prior to feature selection, Chemom. Intell. Lab. Syst. 109 (2011), pp. 146–161.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.