134
Views
3
CrossRef citations to date
0
Altmetric
Articles

Quantum-mechanical LSERs for the concentration-dependent adsorption of aromatic organic compounds by activated carbon: Applications and comparison with carbon nanotubes

& ORCID Icon
Pages 109-130 | Received 13 Oct 2018, Published online: 07 Feb 2019

References

  • M. Karnib, A. Kabbani, H. Holail, and Z. Olama, Heavy metals removal using activated carbon, silica and silica activated carbon composite, Energy Proc. 50 (2014), pp. 113–120.
  • F. Fu and Q. Wang, Removal of heavy metal ions from wastewaters: A review, J. Environ. Manage. 92 (2011), pp. 407–418.
  • R.C. Bansal and M. Goyal, Activated Carbon Adsorption, CRC Press, Boca Raton, 2005.
  • K. Kadirvelu, K. Thamaraiselvi, and C. Namasivayam, Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste, Bioresour. Technol. 76 (2001), pp. 63–65.
  • M. Imamoglu and O. Tekir, Removal of copper (II) and lead (II) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husks, Desalination 228 (2008), pp. 108–113.
  • E. Mohamed, Removal of organic compounds from water by adsorption and photocatalytic oxidation, Ph.D. thesis, Université de Toulouse, 2011.
  • W. Shen, Z. Li, and Y. Liu, Surface chemical functional groups modification of porous carbon, Recent Patents Chem. Eng. 1 (2010), pp. 27–40.
  • H.P. Boehm, Some aspects of the surface chemistry of carbon blacks and other carbons, Carbon 32 (1994), pp. 759–769.
  • X. Yu, W. Sun, and J. Ni, LSER model for organic compounds adsorption by single-walled carbon nanotubes: Comparison with multi-walled carbon nanotubes and activated carbon, Environ. Pollut. 206 (2015), pp. 652—660.
  • S. Zhang, T. Shao, H.S. Kose, and T. Karanfil, Adsorption of aromatic chemicals by carbonaceous adsorbents : A comparative study on granular activated carbon, activated carbon fiber and carbon nanotubes, Environ. Sci. Technol. 44 (2010), pp. 6377–6383.
  • A. Gajewicz, B. Rasulev, T.C. Dinadayalane, P. Urbaszek, T. Puzyn, D. Leszczynska, and J. Leszczynski, Advancing risk assessment of engineered nanomaterials: Application of computational approaches, Adv. Drug Deliv. Rev. 64 (2012), pp. 1663–1693.
  • C.P. Firme and P.R. Bandaru, Toxicity issues in the application of carbon nanotubes to biological systems, Nanomed. Nanotech. Biol. Med. 6 (2010), pp. 245–256.
  • X. Zhao and R. Liu, Recent progress and perspectives on the toxicity of carbon nanotubes at organism, organ, cell, and biomacromolecule levels, Environ. Int. 40 (2012), pp. 244–256.
  • E.K. Sohn, Y.S. Chung, S.A. Johari, T.G. Kim, J.K. Kim, J.H. Lee, Y.H. Lee, S.W. Kang, and I.J. Yu, Acute toxicity comparison of single-walled carbon nanotubes in various freshwater organisms, Biomed. Res. Int. 2015 (2015), pp. 1–7.
  • P. Khalid, V.B. Suman, M.A. Hussain, and A.B. Arun, Toxicology of carbon nanotubes - A review, Inter. J. Appl. Engineer. Res. 11 (2016), pp. 148–157.
  • G. Oberdörster, A. Maynard, K. Donaldson, V. Castranova, J. Fitzpatrick, K. Ausman, J. Carter, B. Karn, W. Kreyling, D. Lai, S. Olin, N. M-Riviere, D. Warheit, and H. Yang. A report from the ILSI Research Foundation/Risk Science Institute Nanomaterial Toxicity Screening Working Group, Principles for characterizing the potential human health effects from exposure to nanomaterials: Elements of a screening strategy, Part. Fibre Toxicol. 2 (2005), pp. 1–35.
  • A. Jafar, Y. Alshatti, and A. Ahmad, Carbon nanotube toxicity: The smallest biggest debate in medical care, Cogent Med. 3 (2016), pp. 1–12.
  • J.M. Valente Nabais, B. Ledesma, and C. Laginhas, Removal of amitriptyline from simulated gastric and intestinal fluids using activated carbons, J. Pharm. Sci. 100 (2011), pp. 5096–5099.
  • A.K. Alegakis, M.N. Tzatzarakis, A.M. Tsatsakis, I.G. Vlachonikolis, and V. Liakou, In vitro study of oxytetracycline adsorption on activated charcoal, J. Environ. Sci. Heal. - Part B Pestic. Food Contam. Agric. Wastes 35 (2000), pp. 559–569.
  • D.M. Chaput de Saintonge and A. Herxheimer, Activated charcoal impairs propantheline absorption, Eur. J. Clin. Pharmacol. 4 (1971), pp. 52–53.
  • M.T.O. Jonker, M.P.W. Suijkerbuijk, H. Schmitt, and T.L. Sinnige, Ecotoxicological effects of activated carbon addition to sediments, Environ. Sci. Technol. 43 (2009), pp. 5959–5966.
  • E.M.L. Janssen and B.A. Beckingham, Biological responses to activated carbon amendments in sediment remediation, Environ. Sci. Technol. 47 (2013), pp. 7595–7607.
  • A. Lillicrap, M. Schaanning, and A. Macken, Assessment of the direct effects of biogenic and petrogenic activated carbon on benthic organisms, Environ. Sci. Technol. 49 (2015), pp. 3705–3710.
  • I. Nybom, S. Abel, G. Waissi, K. Väänänen, K. Mäenpää, M.T. Leppänen, J.V.K. Kukkonen, and J. Akkanen, Effects of activated carbon on PCB bioaccumulation and biological responses of Chironomus riparius in full life cycle test, Environ. Sci. Technol. 50 (2016), pp. 5252–5260.
  • S. Lata and Vikas, Concentration dependent adsorption of aromatic organic compounds by SWCNTs: Quantum-mechanical descriptors for nano-toxicological studies of biomolecules and agrochemicals, J. Mol. Graph. Model. 85 (2018), pp. 232–241.
  • S. Lata and Vikas, Exploring the role of quantum-mechanical descriptors in the concentration-dependent adsorption of aromatic organic compounds by multiwalled carbon nanotubes, Int. J. Quantum Chem. 119 (2019), e25825 (pp. 1–211).
  • K.F. Freed, Many-body approach to electron correlation in atoms and molecules, Phys. Rev. 173 (1968), pp. 1–24.
  • K. Raghavachari and J.B. Anderson, Electron correlation effects in molecules, J. Phys. Chem. 100 (1996), pp. 12960–12973.
  • A. C. Hurley, Electron Correlation in Small Molecules. Academic Press, London, 1976.
  • P.O. Löwdin, The historical development of the electron correlation problem, Int. J. Quantum Chem. 55 (1995), pp. 77–102.
  • Reenu and Vikas, Role of exchange and correlation in the real external prediction of mutagenicity: Performance of hybrid and meta-hybrid exchange-correlation functionals, RSC Adv. 5 (2015), pp. 29238–29251.
  • Chayawan and Vikas, Quantum-mechanical parameters for the risk assessment of multi-walled carbon-nanotubes: A study using adsorption of probe compounds and its application to biomolecules, Environ. Pollut. 218 (2016), pp. 615–624.
  • Vikas, Reenu, and Chayawan, Does electron-correlation has any role in the quantitative structure-activity relationships?, J. Mol. Graph. Model. 42 (2013), pp. 7–16.
  • S. Lata and Vikas, Dispersibility of carbon nanotubes in organic solvents: Do we really have predictive models?, J. Nanoparticle Res. 19 (2017), pp. 1–13.
  • Chayawan and Vikas, Externally predictive single-descriptor based QSPRs for physico-chemical properties of polychlorinated-naphthalenes: Exploring relationships of log SW, log KOA, and log KOW with electron-correlation, J. Hazard. Mater. 296 (2015), pp. 68–81.
  • Reenu and Vikas, Exploring the role of quantum chemical descriptors in modeling acute toxicity of diverse chemicals to Daphnia magna, J. Mol. Graph. Model. 61 (2015), pp. 89–101.
  • Reenu and Vikas, Electron-correlation based externally predictive QSARs for mutagenicity of nitrated-PAHs in Salmonella typhimurium TA100, Ecotoxicol. Environ. Saf. 101 (2014), pp. 42–50.
  • Reenu and Vikas, Evaluating the role of electron-correlation in the external prediction of the toxicity of nitrobenzenes towards Tetrahymena pyriformis, New J. Chem. 40 (2016), pp. 2343–2353.
  • D.O. Cooney, Activated Charcoal in Medical Applications, 2nd Ed. CRC Press, 1995.
  • S. Mikhalovsky and V. Nikolaev, Activated carbons as medical adsorbents, in Activated Carbon Surfaces in Environmental Remediation, T. J. Bandosz (ed.), Interface Science and Technology, 7 (2006) pp. 529–561.
  • L.C.G. Hoegberg, H.R. Angelo, A.B. Christophersen, and H.R. Christensen, Effect of ethanol and pH on the adsorption of acetaminophen (paracetamol) to high surface activated charcoal, in vitro studies, J. Toxicol. - Clin. Toxicol. 40 (2002), pp. 59–67.
  • M.H. Abraham, Scales of solute hydrogen-bonding: Their construction and application to physicochemical and biochemicai processes, Chem. Soc. Rev. 22 (1993), pp. 73–83.
  • F. Jensen, Introduction to Computational Chemistry, John Wiley and Sons, Chichester, 2007.
  • F. Weigend and R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy, Phys. Chem. Chem. Phys. 7 (2005), pp. 3297–3305.
  • A.D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 98 (1993), pp. 5648–5652.
  • C. Lee, W. Yang, and R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 37 (1988), pp. 785–789.
  • Vikas and Chayawan, Externally predictive quantitative modeling of supercooled liquid vapor pressure of polychlorinated-naphthalenes through electron-correlation based quantum-mechanical descriptors, Chemosphere 95 (2014), pp. 448–454.
  • M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 09, Revision B.01., 2009. Gaussian, Inc., Wallingford CT.
  • P. Gramatica, N. Chirico, E. Papa, S. Cassani, and S. Kovarich, QSARINS: A new software for the development, analysis, and validation of QSAR MLR models, J. Comput. Chem. 34 (2013), pp. 2121–2132.
  • N. Chirico and P. Gramatica, Real external predictivity of QSAR models. Part 2. New intercomparable thresholds for different validation criteria and the need for scatter plot inspection, J. Chem. Inf. Model. 52 (2012), pp. 2044–2058.
  • N. Chirico and P. Gramatica, Real external predictivity of QSAR models: How to evaluate It? Comparison of different validation criteria and proposal of using the concordance correlation coefficient, J. Chem. Inf. Model. 51 (2011), pp. 2320–2335.
  • P.K. Ojha, I. Mitra, R.N. Das, and K. Roy, Further exploring r2m metrics for validation of QSPR models, Chemom. Intell. Lab. Syst. 107 (2011), pp. 194–205.
  • R. Todeschini, V. Consonni, and A. Maiocchi, The K correlation index: Theory development and its application in chemometrics, Chemom. Intell. Lab. Syst. 46 (1999), pp. 13–29.
  • T.C. Tan and W.K. Teo, Combined effect of carbon dosage and initial adsorbate concentration on the adsorption isotherm of heavy metals on activated carbon, Water Res. 21 (1987) pp. 1183–1188.
  • J. Yang, C. Li, B. Yang, S. Kang, and Z. Zhang, Study on adsorption of chromium (VI) by activated carbon from cassava sludge, Earth Environ. Sci. 128 (2018), p. 012017.
  • V.P. Vinod and T.S. Anirudhan, Effect of experimental variables on phenol adsorption on activated carbon prepared from coconut husk by single-step steam pyrolysis: Mass transfer process and equilibrium studies, J. Sci. Ind. Res. 61 (2002), pp. 128–138.
  • R.R. Johnson, A.T.C. Johnson, and M.L. Klein, Probing the structure of DNA− Carbon nanotube hybrids with molecular dynamics, Nano Lett. 8 (2008), pp. 69–75.
  • S. Gowtham, R.H. Scheicher, R. Ahuja, R. Pandey, and S.P. Karna, Physisorption of nucleobases on graphene: Density-functional calculations, Phys. Rev. B - Condens. Matter Mater. Phys. 76 (2007), pp. 033401–033403.
  • M.F.F. Bernardes, M. Pazin, L.C. Pereira, and D.J. Dorta, Impact of pesticides on environmental and human health, In Toxicology Studies - Cells, Drugs and Environment, A.C. Andreazza (ed.), IntechOpen, London, 2015 pp. 195–234.
  • W. Aktar, D. Sengupta, and A. Chowdhury, Impact of pesticides use in agriculture: Their benefits and hazards, Interdiscip. Toxicol. 2 (2009), pp. 1–12.
  • P. Nicolopoulou-Stamati, S. Maipas, C. Kotampasi, P. Stamatis, and L. Hens, Chemical pesticides and human health: The urgent need for a new concept in agriculture, Front. Public Heal. 4 (2016), pp. 1–8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.