287
Views
3
CrossRef citations to date
0
Altmetric
Articles

Consensus QSPR modelling for the prediction of cellular response and fibrinogen adsorption to the surface of polymeric biomaterials

& ORCID Icon
Pages 363-382 | Received 11 Feb 2019, Accepted 10 Apr 2019, Published online: 21 May 2019

References

  • D.S. Kohane, and R. Langer, Polymeric biomaterials in tissue engineering. Pediatr. Res. 63 (2008), pp. 487–491.
  • N. Huebsch, and D.J. Mooney, Inspiration and application in the evolution of biomaterials. Nature 462 (2009), pp. 426–432.
  • G.K. Naughton, W.R. Tolbert, and T.M. Grillot, Emerging developments in tissue engineering and cell technology, Tissue Eng. 1 (1995), pp. 211–219. doi:10.1089/ten.1995.1.211.
  • D.G. Castner and B.D. Ratner, Biomedical surface science: Foundations to frontiers, Surf. Sci. 500 (2002), pp. 28–60. doi:10.1016/S0039-6028(01)01587-4.
  • J.R. Smith, A. Seyda, N. Weber, D. Knight, S. Abramson, and J. Kohn, Integration of combinatorial synthesis, rapid screening, and computational modeling in biomaterials development, Macromol. Rapid Commun. 25 (2004), pp. 127–140. doi:10.1002/(ISSN)1521-3927.
  • A.L. Bloom, Haemostasis and thrombosis, Churchill Livingstone, Edinburgh, 1994.
  • J. Kohn, W.J. Welsh, and D. Knight, A new approach to the rationale discovery of polymeric biomaterials, Biomaterials 28 (2007), pp. 4171–4177. doi:10.1016/j.biomaterials.2007.06.022.
  • J. Kohn, New approaches to biomaterials design, Nat. Mater. 3 (2004), pp. 745–747.doi:10.1038/nmat1249.
  • Y.K. Peterson, X.S. Wang, P.J. Casey, and A. Tropsha, Discovery of geranylgeranyltransferase-i inhibitors with novel scaffolds by the means of quantitative structure- activity relationship modeling, virtual screening, and experimental validation, J. Med. Chem. 52 (2009), pp. 4210–4220. doi:10.1021/jm8013772.
  • V. Kholodovych, J.R. Smith, D. Knight, S. Abramson, J. Kohn, and W.J. Welsh, Accurate predictions of cellular response using QSPR: A feasibility test of rational design of polymeric biomaterials, Polymer 45 (2004), pp. 7367–7379. doi:10.1016/j.polymer.2004.09.002.
  • A.V. Gubskaya, V. Kholodovych, D. Knight, J. Kohn, and W.J. Welsh, Prediction of fibrinogen adsorption for biodegradable polymers: Integration of molecular dynamics and surrogate modeling, Polymer 48 (2007), pp. 5788–5801. doi:10.1016/j.polymer.2007.07.007.
  • J.R. Smith, D. Knight, J. Kohn, K. Rasheed, N. Weber, and S. Abramson, Using non-linear regression to predict bioresponse in a combinatorial library of biodegradable polymers, Mater. Res. Soc. Symp. Proc. 804 (2003), pp. JJ5.7.1–JJ5.7.7. doi:10.1557/PROC-804-JJ5.7.
  • J.R. Smith, V. Kholodovych, D. Knight, W.J. Welsh, and J. Kohn, QSAR models for the analysis of bioresponse data from combinatorial libraries of biomaterials, QSAR Comb. Sci. 24 (2005), pp. 99–113. doi:10.1002/(ISSN)1611-0218.
  • J.R. Smith, D. Knight, J. Kohn, K. Rasheed, N. Weber, V. Kholodovych, and W.J. Welsh, Using surrogate modeling in the prediction of fibrinogen adsorption onto polymer surfaces, J. Chem. Inf. Comput. Sci. 44 (2004), pp. 1088–1097. doi:10.1021/ci0499774.
  • M.H. Fatemi, A. Kerdarshad, and E.G. Rostami, In-silico prediction of cellular responses to polymeric biomaterials from their molecular descriptors, Caspian J. Chem. 3 (2014), pp. 23–34.
  • K. Roy, P. Ambure, S. Kar, and P.K. Ojha, Is it possible to improve the quality of predictions from an “intelligent” use of multiple QSAR/QSPR/QSTR models? J. Chemom. 32 (2018), pp. e2992. doi:10.1002/cem.2992.
  • S. Brocchini, K. James, V. Tangpasuthadol, and J. Kohn, A combinatorial approach for polymer design, J. Am. Chem. Soc. 119 (1997), pp. 4553–4554. doi:10.1021/ja970389z.
  • J.R. Smith, V. Kholodovych, D. Knight, J. Kohn, and W.J. Welsh, Predicting fibrinogen adsorption to polymeric surfaces in silico: A combined method approach, Polymer 46 (2005), pp. 4296–4306. doi:10.1016/j.polymer.2005.03.012.
  • S. Brocchini, K. James, V. Tangpasuthadol, and J. Kohn, Structure-property correlations in a combinatorial library of degradable biomaterials, J. Biomed. Mater. Res. 42 (1998), pp. 66–75.
  • C.W. Yap, PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints, J. Comput. Chem. 32 (2011), pp. 1466–1474. doi:10.1002/jcc.21707.
  • R. Todeschini, V. Consonni, A. Mauri, and M. Pavan, DRAGON-Software for the calculation of molecular descriptors, Web Version 3 (2004). http://www.talete.mi.it/products/dragon_description.htm
  • A. Mauri, V. Consonni, M. Pavan, and R. Todeschini, Dragon software: An easy approach to molecular descriptor calculations, Match 56 (2006), pp. 237–248.
  • K. Roy, S. Kar, and R.N. Das, A Primer on QSAR/QSPR Modeling: Fundamental Concepts, Springer, New York, 2015.
  • R.W. Kennard and L.A. Stone, Computer aided design of experiments, Technometrics 11 (1969), pp. 137–148. doi:10.1080/00401706.1969.10490666.
  • H. Golmohammadi, Z. Dashtbozorgi, and W.E. Acree Jr, Quantitative structure-activity relationship prediction of blood-to-brain partitioning behavior using support vector machine, Eur. J. Pharm. Sci. 47 (2012), pp. 421–429. doi:10.1016/j.ejps.2012.06.021.
  • P.M. Khan and K. Roy, Current approaches for choosing feature selection and learning algorithms in quantitative structure-activity relationships (QSAR), Expert Opin. Drug Discov. 13 (2018), pp. 1075–1089. doi:10.1080/17460441.2018.1542428.
  • S. Wold, M. Sjöström, and L. Eriksson, PLS-regression: A basic tool of chemometrics, Chemom. Intell. Lab. Syst. 58 (2001), pp. 109–130. doi:10.1016/S0169-7439(01)00155-1.
  • K. Roy and I. Mitra, On various metrics used for validation of predictive QSAR models with applications in virtual screening and focused library design, Comb. Chem. High Throughput Screen. 14 (2011), pp. 450–474.
  • K. Roy, I. Mitra, P.K. Ojha, S. Kar, R.N. Das, and H. Kabir, Introduction of rm2 (rank) metric incorporating rank-order predictions as an additional tool for validation of QSAR/QSPR models, Chemom. Intell. Lab. Syst. 118 (2012), pp. 200–210. doi:10.1016/j.chemolab.2012.06.004.
  • Y. Wang, J. Chen, W. Tang, D. Xia, Y. Liang, and X. Li, Modeling adsorption of organic pollutants onto single-walled carbon nanotubes with theoretical molecular descriptors using MLR and SVM algorithms, Chemosphere 214 (2019), pp. 79–84. doi:10.1016/j.chemosphere.2018.09.074.
  • M.T.S.G. Tugcu, M. Vracko, M. Novic, and N. Minovski, QSTR modelling of the acute toxicity of pharmaceuticals to fish, SAR QSAR Environ. Res. 23 (2012), pp. 297–310. doi:10.1080/1062936X.2012.657678.
  • J. Xu, L. Zhu, D. Fang, L. Liu, Z. Bai, L. Wang, and W. Xu, A simple QSPR model for the prediction of the adsorbability of organic compounds onto activated carbon cloth, SAR QSAR Environ. Res. 24 (2013), pp. 47–59. doi:10.1080/1062936X.2012.728997.
  • J. Shadmanesh, A.P. Jadid, Z. Azari, M. Niazi, and M.S. Aghbolagh, QSAR study of active human glucagon receptor antagonists by SW-MLR and SW-SVM methods, Med. Chem. Res. 23 (2014), pp. 2639–2650. doi:10.1007/s00044-013-0851-6.
  • T.I. Oprea, J. Gottfries, V. Sherbukhin, P. Svensson, and T.C. Kühler, Chemical information management in drug discovery: Optimizing the computational and combinatorial chemistry interfaces, J. Mol. Graph. Model. 18 (2000), pp. 512–524.
  • T.I. Oprea, Property distribution of drug-related chemical databases, J. Comput. Aided Mol. Des. 14 (2000), pp. 251–264.
  • R. Todeschini and V. Consonni, Molecular Descriptors for Chemoinformatics: Volume I: Alphabetical Listing/Volume II: Appendices, References, John Wiley & Sons, New Jersey, 2009.
  • P. Simca, Version 9.0; Umetrics AB, Umeå, Sweden. https://umetrics.com/
  • M. Chen, F. Jabeen, B. Rasulev, M. Ossowski, and P. Boudjouk, A computational structure–property relationship study of glass transition temperatures for a diverse set of polymers, J. Polym. Sci. B Polym. Phys. 56 (2018), pp. 877–885. doi:10.1002/polb.24602.
  • S.C. Basak and D. Mills, Quantitative structure-activity relationships for cycloguanil analogs as PfDHFR inhibitors using mathematical molecular descriptors, SAR QSAR Environ. Res. 21 (2010), pp. 215–229. doi:10.1080/10629361003770951.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.