511
Views
13
CrossRef citations to date
0
Altmetric
Articles

QSPR studies on water solubility, octanol-water partition coefficient and vapour pressure of pesticides

Pages 135-148 | Received 06 Nov 2019, Accepted 27 Nov 2019, Published online: 16 Dec 2019

References

  • C. Hansch and A. Leo, Exploring QSAR. Fundamentals and Applications in Chemistry and Biology, American Chemical Society, Washington, D.C., 1995.
  • C. Hansch and T. Fujita, Classical and three-dimensional QSAR in agrochemistry, ACS Symposium Volume 606, American Chemical Society, Washington DC, 1995.
  • E. Benfenati, Theory, guidance and applications on QSAR and REACH, Orchestra, 2012. Available at http://ebook.insilico.eu/insilico-ebook-orchestra-benfenati-ed1_rev-June2013.pdf
  • M.V. Putz, QSAR and SPECTRAL-SAR in Computational Ecotoxicology, CRC Press, New York, USA, 2012.
  • J. Leszczynski, Challenges and Advances in Computational Chemistry and Physics, Springer, Berlin, Germany, 2017.
  • M.T.D. Cronin and D.J. Livingstone, Predicting Chemical Toxicity and Fate, CRC press, Boca Raton, 2004.
  • M. Hamadache, A. Amrane, O. Benkortbi, S. Hanini, L. Khaouane, and C.S. Moussa, Environmental toxicity of pesticides, and its modeling by QSAR approaches in Advances in QSAR modeling. Challenges and Advances in Computational Chemistry and Physics, K. Roy (ed.), Springer, Cham, Switzerland (2017), pp. 471–501. doi:10.1007/978-3-319-56850-8_13.
  • P.R. Duchowicz and E.A. Castro, The importance of the QSAR-QSPR methodology to the theoretical study of pesticides, Int. J. Chem. Model. 5 (2013), pp. 35–50. Available at http://www.novapublishers.org/catalog/product_info.php?products_id=41525.
  • C. Tebes-Stevens, J.M. Patel, M. Koopmans, J. Olmstead, S.H. Hilal, N. Pope, E.J. Weber, and K. Wolfe, Demonstration of a consensus approach for the calculation of physicochemical properties required for environmental fate assessments, Chemosphere 194 (2018), pp. 94–106. doi:10.1016/j.chemosphere.2017.11.137.
  • J.J. Villaverde, B. Sevilla-Morán, C. López-Goti, J.L. Alonso-Prados, and P. Sandín-España, Considerations of nano-QSAR/QSPR models for nanopesticide risk assessment within the European legislative framework, Sci. Total Environ. 634 (2018), pp. 1530–1539. doi:10.1016/j.scitotenv.2018.04.033.
  • M.V. Diudea, QSPR/QSAR Studies by Molecular Descriptors, Nova Science Publishers, New York, 2001.
  • A.R. Katritzky and E.V. Goordeva, Traditional topological indices vs. electronic, geometrical, and combined molecular descriptors in QSAR/QSPR research, J. Chem. Inf. Comput. Sci. 33 (1993), pp. 835–857. doi:10.1021/ci00016a005.
  • R. Todeschini and V. Consonni, Molecular Descriptors for Chemoinformatics (Methods and Principles in Medicinal Chemistry), Wiley-VCH, Weinheim, 2009.
  • V.H. Masand and V. Rastija, PyDescriptor: A new PyMOL plugin for calculating thousands of easily understandable molecular descriptors, Chemom. Intell. Lab. Syst. 169 (2017), pp. 12–18. doi:10.1016/j.chemolab.2017.08.003.
  • N. Trinajstic, Chemical Graph Theory, CRC Press, Boca Raton (FL), 1992.
  • J.C. Garro Martinez, M.F. Andrada, M.R. Estrada, E.A. Castro, G.N. Zamarbide, Z. Mucsi, and I.G. Csizmadia, An exploratory study to investigate possible simple descriptors in order to predict relative activity of antiepileptic enaminones, J. Phys. Org. Chem. 21 (2008), pp. 409–418. doi:10.1002/poc.1365.
  • R.D. Tosso, M. Vettorazzi, S.A. Andujar, L.J. Gutierrez, J.C. Garro Martinez, E. Angelina, R. Rodríguez, F.D. Suvire, M. Nogueras, J. Cobo, and R.D. Enriz, The electronic density obtained from a QTAIM analysis used as molecular descriptor. A study performed in a new series of DHFR inhibitors, J. Mol. Struct. 1134 (2017), pp. 464–474. doi:10.1016/j.molstruc.2016.12.060.
  • J.C. Dearden, P. Rotureau, and G. Fayet, QSPR prediction of physico-chemical properties for REACH, SAR QSAR Environ. Res. 24 (2013), pp. 279–318. doi:10.1080/1062936X.2013.773372.
  • D.M. Hawkins, The problem of overfitting, J. Chem. Inf. Comput. Sci. 44 (2004), pp. 1–12. doi:10.1021/ci0342472.
  • P. Gramatica, Principles of QSAR models validation: Internal and external, QSAR Comb. Sci. 26 (2007), pp. 694–701. doi:10.1002/qsar.200610151.
  • K. Roy, S. Kar, and P. Ambure, On a simple approach for determining applicability domain of QSAR models, Chemom. Intell. Lab. Syst. 145 (2015), pp. 22–29. doi:10.1016/j.chemolab.2015.04.013.
  • US EPA Agency. Finalization of guidance on incorporation of water treatment effects on pesticide removal and transformations in drinking water exposure assessments, 2017. Available at https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/finalization-guidance-incorporation-water-treatment.
  • D. Hamilton, A. Ambrus, R. Dieterle, A. Felsot, C. Harris, P. Holland, A. Katayama, N. Kurihara, J. Linders, and J. Unsworth, Regulatory limits for pesticide residues in water (IUPAC technical report), Pure Appl. Chem. 75 (2003), pp. 1123–1155. doi:10.1351/pac200375081123.
  • J.J. Villaverde, B. Sevilla-Morán, C. López-Goti, J.L. Alonso-Prados, and P. Sandín-España, Computational methodologies for the risk assessment of pesticides in the European Union, J. Agric. Food Chem. 65 (2017), pp. 2017–2018. doi:10.1021/acs.jafc.7b00516.
  • Y. Ran, Y. He, G. Yang, J.L. Johnson, and S.H. Yalkowsky, Estimation of aqueous solubility of organic compounds by using the general solubility equation, Chemosphere 48 (2002), pp. 487–509. doi:10.1016/S0045-6535(02)00118-2.
  • E.D. Clarke and J.S. Delaney, Physical and molecular properties of agrochemicals: An analysis of screen inputs, hits, leads, and products, Chimia Int. J. Chem. 57 (2003), pp. 731–734. Available at https://www.ingentaconnect.com/content/scs/chimia/2003/00000057/00000011/art00013?crawler=true&mimetype=application/pdf.
  • J.S. Delaney, ESOL: Estimating aqueous solubility directly from molecular structure, J. Chem. Inf. Comput. Sci. 44 (2004), pp. 1000–1005. doi:10.1021/ci034243x.
  • B. Bhhatarai and P. Gramatica, Prediction of aqueous solubility, vapor pressure and critical micelle concentration for aquatic partitioning of perfluorinated chemicals, Environ. Sci. Technol. 45 (2010), pp. 8120–8128. doi:10.1021/es101181g.
  • O. Deeb and M. Goodarzi, Predicting the solubility of pesticide compounds in water using QSPR methods, Mol. Phys. 108 (2010), pp. 181–192. doi:10.1080/00268971003604575.
  • A.J. Wilczyńska-Piliszek, S. Piliszek, and J. Falandysz, QSAR and ANN for the estimation of water solubility of 209 polychlorinated trans-azobenzenes, J. Environ. Sci. Health, Part A 47 (2012), pp. 155–166. doi:10.1080/10934529.2012.640243.
  • X.L. Zeng, H.J. Wang, and Y. Wang, QSPR models of n-octanol/water partition coefficients and aqueous solubility of halogenated methyl-phenyl ethers by DFT method, Chemosphere 86 (2012), pp. 619–625. doi:10.1016/j.chemosphere.2011.10.051.
  • R.N. Das and K. Roy, QSPR with extended topochemical atom (ETA) indices. 4. Modeling aqueous solubility of drug like molecules and agrochemicals following OECD guidelines, Struct. Chem. 24 (2013), pp. 303–331. doi: 10.1007%2Fs11224-012-0080-5.
  • A.A. Toropov, A.P. Toropova, E. Benfenati, G. Gini, D. Leszczynska, and J. Leszczynski, CORAL: QSPR model of water solubility based on local and global SMILES attributes, Chemosphere 90 (2013), pp. 877–880. doi:10.1016/j.chemosphere.2012.07.035.
  • C.I. Cappelli, S. Manganelli, A. Lombardo, A. Gissi, and E. Benfenati, Validation of quantitative structure-activity relationship models to predict water-solubility of organic compounds, Sci. Total Environ. 463 (2013), pp. 781–789. doi:10.1016/j.scitotenv.2013.06.081.
  • M. Kim, L.Y. Li, and J.R. Grace, Predictability of physicochemical properties of polychlorinated dibenzo-p-dioxins (PCDDs) based on single-molecular descriptor models, Environ. Pollut. 213 (2016), pp. 99–111. doi:10.1016/j.envpol.2016.02.007.
  • A. Bouakkadia, H. Haddag, N. Bouarra, and D. Messadi, QSPR study of the water solubility of a diverse set of agrochemicals: Hybrid (GA/MLR) approach, Synth. Rev. Des. Sci. La Technol. 32 (2016), pp. 12–21. Available at https://www.ajol.info/index.php/srst/article/view/135870.
  • K. Klimenko, V. Kuz’min, L. Ognichenko, L. Gorb, M. Shukla, N. Vinas, E. Perkins, P. Polishchuk, A. Artemenko, and J. Leszczynski, Novel enhanced applications of QSPR models: Temperature dependence of aqueous solubility, J. Comput. Chem. 37 (2016), pp. 2045–2051. doi:10.1002/jcc.24424.
  • Q. Zang, K. Mansouri, A.J. Williams, R.S. Judson, D.G. Allen, W.M. Casey, and N.C. Kleinstreuer, In silico prediction of physicochemical properties of environmental chemicals using molecular fingerprints and machine learning, J. Chem. Inf. Model. 57 (2017), pp. 36–49. doi:10.1021/acs.jcim.6b00625.
  • S.E. Fioressi, D.E. Bacelo, C. Rojas, J.F. Aranda, and P.R. Duchowicz, Conformation-independent quantitative structure-property relationships study on water solubility of pesticides, Ecotox. Environ. Safe. 171 (2019), pp. 47–53. doi:10.1016/j.ecoenv.2018.12.056.
  • S. Kherouf, N. Bouarra, A. Bouakkadia, and D. Messadi, Modeling of linear and nonlinear quantitative structure property relationships of the aqueous solubility of phenol derivatives, J. Serb. Chem. Soc. 84 (2019), pp. 575–590. doi:10.2298/JSC180820016K.
  • D. Kempińska, T. Chmiel, A.K. Wasik, A. Mróz, Z. Mazerska, and J. Namieśnik, State of the art and prospects of methods for determination of lipophilicity of chemical compounds, TrAC Trends Anal. Chem. 113 (2019), pp. 54–73. doi:10.1016/j.trac.2019.01.011.
  • A. Noble, Partition coefficients (n-octanol-water) for pesticides, J. Chromatogr. 642 (1993), pp. 3–14. doi:10.1016/0021-9673(93)80072-G.
  • J. Devillers, Calculation of octanol/water partition coefficients for pesticides: A comparative study, SAR QSAR Environ. Res. 10 (1999), pp. 249–262. doi:10.1080/10629369908039179.
  • F. Wania and D. Mackay, The evolution of mass balance models of persistent organic pollutant fate in the environment, Environ. Pollut. 100 (1999), pp. 223–240. doi:10.1016/S0269-7491(99)00093-7.
  • M. Chessells, D.W. Hawker, and D.W. Connell, Critical evaluation of the measurement of the 1- octanol/water partition coefficient of hydrophobic compounds, Chemosphere 22 (1991), pp. 1175–1190. doi:10.1016/0045-6535(91)90213-W.
  • A. Paschke, P.L. Neitzel, W. Walther, and G. Schuurmann, Octanol/water partition coefficient of selected herbicides: Determination using shake-flask method and reversed-phase high-performance liquid chromatography, J. Chem. Eng. Data 49 (2004), pp. 1639–1642. doi:10.1021/je049947x.
  • R. Mannhold, G.I. Poda, C. Ostermann, and I.V. Tetko, Calculation of molecular lipophilicity: State-of-the-art and comparison of log P methods on more than 96,000 compounds, J. Pharm. Sci. 98 (2009), pp. 861–893. doi:10.1002/jps.21494.
  • X. Hui-Ying, Z. Jian-Wei, H. Gui-Xiang, and W. Wei, QSPR/QSAR models for prediction of the physico-chemical properties and biological activity of polychlorinated diphenyl ethers (PCDEs), Chemosphere 80 (2010), pp. 665–670. doi:10.1016/j.chemosphere.2010.04.050.
  • R.A. Manish and G. Madhu, QSAR prediction of n-octanol/water partition coefficient for polychlorinated biphenils, Int. J. Adv. Technol. Eng. Sci. 2 (2014), pp. 781–792. Available at http://www.ijates.com/images/short_pdf/1412369528_357_IJATES.pdf.
  • A. Bouakkadia, L. Lourici, and D. Messadi, Modeling and prediction of octanol/water partition coefficient of pesticides using QSPR methods, Manag. Environ. Qual. Int. J. 28 (2017), pp. 579–592. doi:10.1108/meq-08-2015-0162.
  • T. Ferrari, A. Lombardo, and E. Benfenati, QSARpy: A new flexible algorithm to generate QSAR models based on dissimilarities. The log kow case study, Sci. Total Environ. 637–638 (2018), pp. 1158–1165. doi:10.1016/j.scitotenv.2018.05.072.
  • R. Amiri, D. Messadi, and A. Bouakkadia, QSAR study of octanol/water partition coefficient of organophosphorous compounds: Hybrid (GA/MLR) approach and hybrid (GA/ANN), J. Serb. Chem. Soc. (2019), in press. doi:10.2298/JSC190610090A.
  • B. Souyei, A.H. Seyd, F. Zaiz, and A. Rebiai, Application of inverse QSAR/QSPR analysis for pesticides structures generation, Acta Chim. Slov. 66 (2019), pp. 315–325. doi:10.17344/acsi.2018.4793.
  • K.B. Hanson, D.J. Hoff, T.J. Lahren, D.R. Mount, A.J. Squillace, and L.P. Burkhard, Estimating n-octanol-water partition coefficients for neutral highly hydrophobic chemicals using measured n-butanol-water partition coefficients, Chemosphere 218 (2019), pp. 616–623. doi:10.1016/j.chemosphere.2018.11.141.
  • E.N. Papadakis, Z. Vryzas, A. Kotopoulou, K. Kintzikoglou, K.C. Makris, and E. Papadopoulou-Mourkidou, A pesticide monitoring survey in rivers and lakes of northern Greece and its human and ecotoxicological risk assessment, Ecotoxicol. Environ. Safe. 116 (2015), pp. 1–9. doi:10.1016/j.ecoenv.2015.02.033.
  • P. Otieno, P.O. Owuor, J.O. Lalah, G. Pfister, and K.W. Schramm, Monitoring the occurrence and distribution of selected organophosphates and carbamate pesticide residues in the ecosystem of Lake Naivasha, Kenya, Toxicol. Environ. Chem. 97 (2015), pp. 51–61. doi:10.1080/02772248.2014.942309.
  • S.I. Sandler, S.-T. Lin, and A.K. Sum, The use of quantum chemistry to predict phase behavior for environmental and process engineering, Fluid Phase Equilib. 194 (2002), pp. 61–75. doi:10.1016/S0378-3812(01)00643-4.
  • E.P. Meulenberg, W.H. Mulder, and P.G. Stoks, Immunoassays for pesticides, Environ. Sci. Technol. 29 (1995), pp. 553–561. doi:10.1021/es00003a001.
  • L. Mamy, D. Patureau, E. Barriuso, C. Bedos, F. Bessac, X. Louchart, F. Martin-Iaurent, C. Miege, and P. Benoit, Prediction of the fate of organic compounds in the environment from their molecular properties: A review, Crit. Rev. Environ. Sci. Technol. 45 (2015), pp. 1277–1377. doi:10.1080/10643389.2014.955627.
  • M. Staikova, F. Wania, and D.J. Donaldson, Molecular polarizability as a single parameter predictor of vapour pressures and octanol-air partitioning coefficients of non-polar compounds: A priori approach and results, Atmos. Environ. 38 (2004), pp. 213–225. doi:10.1016/j.atmosenv.2003.09.055.
  • K. Nakajoh, M. Grabda, S. Oleszek-Kudlak, E. Shibata, F. Eckert, and T. Nakamura, Prediction of vapour pressures of chlorobenzenes and selected polychlorinated biphenyls using the COSMO-RS model, J. Mol. Struct.: Theochem 895 (2009), pp. 9–17. doi:10.1016/j.theochem.2008.10.015.
  • J.A. Lazzús, Prediction of solid vapor pressures for organic and inorganic compounds using a neural network, Thermochim. Acta 489 (2009), pp. 53–62. doi:10.1016/j.tca.2009.02.001.
  • N. Goudarzi and M. Goodarzi, Prediction of the vapor pressure of some halogenated methyl-phenylether (anisole) compounds using linear and nonlinear QSPR methods, Mol. Phys. 107 (2009), pp. 1615–1620. doi:10.1080/00268970902994293.
  • S.C. Basak and D. Mills, Predicting the vapour pressure of chemicals from structure: A comparison of graph theoretic versus quantum chemical descriptors, SAR QSAR Environ. Res. 20 (2009), pp. 119–132. doi:10.1080/10629360902726007.
  • A.J. Wilczyńska-Piliszek, S. Piliszek, and J. Falandysz, QSPR for prediction of subcooled vapor pressures (logPL) of polychlorinated trans-azobenzenes, J. Environ. Sci. Health B. 47 (2012), pp. 660–669. doi:10.1080/03601234.2012.669206.
  • X.L. Zeng, X.L. Zhang, and Y. Wang, QSPR modeling of n-octanol/air partition coefficients and liquid vapor pressures of polychlorinated dibenzo-p-dioxins, Chemosphere 91 (2013), pp. 229–232. doi:10.1016/j.chemosphere.2012.12.060.
  • Vikas and Chayawan, Externally predictive quantitative modeling of supercooled liquid vapor pressure of polychlorinated-naphthalenes through electron-correlation based quantum-mechanical descriptors, Chemosphere 95 (2014), pp. 448–454. doi:10.1016/j.chemosphere.2013.09.093.
  • M. Honarmand, E. Sanjari, and H. Badihi, Prediction of saturated vapor pressures using non-linear equations and artificial neural network approach, J. Math. Comput. Sci. 8 (2014), pp. 343–358. doi:10.22436/jmcs.08.04.03.
  • A. Tarjomannejad, Prediction of the liquid vapor pressure using the artificial neural network-group contribution method, Iran. J. Chem. Chem. Eng. 34 (2015), pp. 97–111. Available at http://www.ijcce.ac.ir/article_15461_af78a0f1cf78790f947437f91243d373.pdf.
  • M. Goodarzi, L.D.S. Coelho, B. Honarparvar, E.V. Ortiz, and P.R. Duchowicz, Application of quantitative structure-property relationship analysis to estimate the vapor pressure of pesticides, Ecotox. Environ. Safe. 128 (2016), pp. 52–60. doi:10.1016/j.ecoenv.2016.01.020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.