153
Views
34
CrossRef citations to date
0
Altmetric
Articles

Weighted Mostar indices as measures of molecular peripheral shapes with applications to graphene, graphyne and graphdiyne nanoribbons

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &
Pages 187-208 | Received 02 Nov 2019, Accepted 19 Dec 2019, Published online: 21 Jan 2020

References

  • S. Priyadarsini, S. Mohanty, S. Mukherjee, S. Basu, and M. Mishra, Graphene and graphene oxide as nanomaterials for medicine and biology application, J. Nanostruct. Chem. 8 (2018), pp. 123–137. doi:10.1007/s40097-018-0265-6.
  • M. Inagaki and F. Kang, Graphene derivatives: Graphane, fluorographene, graphene oxide, graphyne and graphdiyne, J. Mater. Chem. A 33 (2014), pp. 13193–13206. doi:10.1039/C4TA01183J.
  • U. Srimathi, V. Nagarajan, and R. Chandiramouli, Interaction of Imuran, Pentasa and Hyoscyamine drugs and solvent effects on graphdiyne nanotube as a drug delivery system - A DFT study, J. Mol. Liq. 265 (2018), pp. 199–207. doi:10.1016/j.molliq.2018.05.114.
  • H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, and R.E. Smalley, Long carbon chain molecules in circumstellar shells, Astrophys. J. 314 (1987), pp. 352–355. doi:10.1086/165065.
  • J.R. Dias, The formula periodic table for benzenoid hydrocarbons and the unifying theory of a periodic table set, Polycycl. Aromat. Comp. 4 (1994), pp. 87–106. doi:10.1080/10406639408034803.
  • J.R. Dias, Structure and electronic characteristics of coronoid polycyclic aromatic hydrocarbons as potential models of graphite layers with hole defects, J. Phys. Chem. A 112 (2008), pp. 12281–12292. doi:10.1021/jp806987f.
  • Q. Peng, A.K. Dearden, J. Crean, L. Han, S. Liu, X. Wen, and S. De, New materials graphyne, graphdiyne, graphone, and graphane: Review of properties, synthesis, and application in nanotechnology, Nanotechnol. Sci. Appl. 7 (2014), pp. 1–29. doi:10.2147/NSA.S40324.
  • C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, and A. Govindaraj, Graphene: The new two-dimensional nanomaterial, Angew. Chem. 48 (2009), pp. 7752–7777. doi:10.1002/anie.200901678.
  • K. Srinivasu and S.K. Ghosh, Graphyne and graphdiyne: Promising materials for nanoelectronics and energy storage applications, J. Phys. Chem. C 116 (2012), pp. 5951–5956. doi:10.1021/jp212181h.
  • H. Yu, Y. Xue, and Y. Li, Graphdiyne and its assembly architectures: Synthesis, functionalization, and applications, Adv. Mater. 42 (2019), pp. e1803101. doi:10.1002/adma.201803101.
  • Y.P. Zheng, Q. Feng, N.J. Tang, and Y.W. Du, Synthesis and photoluminescence of graphdiyne, New Carbon Mater. 33 (2018), pp. 516–521. doi:10.1016/S1872-5805(18)60354-3.
  • K. Balasubramanian and S.P. Gupta, Quantum molecular dynamics, topological, group theoretical and graph theoretical studies of protein-protein interactions, Curr. Top. Med. Chem. 19 (2019), pp. 426–443. doi:10.2174/1568026619666190304152704.
  • K. Balasubramanian, Mathematical and computational techniques for drug discovery: Promises and developments, Curr. Top. Med. Chem. 18 (2018), pp. 2774–2799. doi:10.2174/1568026619666190208164005.
  • R. Carbó-Dorca, A. Gallegos, and Á.J. Sánchez, Notes on quantitative structure-properties relationships (QSPR)(1): A discussion on a QSPR dimensionality paradox (QSPR DP) and its quantum resolution, J. Comput. Chem. 30 (2009), pp. 1146–1159. doi:10.1002/jcc.v30:7.
  • P.G. Mezey, Similarity analysis in two and three dimensions using lattice animals and polycubes, J. Math. Chem. 11 (1992), pp. 27–45. doi:10.1007/BF01164193.
  • P.G. Mezey, Shape-similarity measures for molecular bodies: A 3D topological approach to quantitative shape-activity relations, J. Chem. Inf. Comput. Sci. 32 (1992), pp. 650–656. doi:10.1021/ci00010a011.
  • A. Frolov, E. Jako, and P.G. Mezey, Logical models of molecular shapes and their families, J. Math. Chem. 30 (2001), pp. 389–409. doi:10.1023/A:1015190410232.
  • E. Estrada, The Structure of Complex Networks, Oxford University Press, New York, 2011.
  • K. Balasubramanian, Integration of graph theory and quantum chemistry for structure-activity relationships, SAR QSAR Environ. Res. 2 (1994), pp. 59–77. doi:10.1080/10629369408028840.
  • A.T. Balaban, Topological and stereochemical molecular descriptors for databases useful in QSAR, similarity/dissimilarity and drug design, SAR QSAR Environ. Res. 8 (1998), pp. 1–21. doi:10.1080/10629369808033259.
  • R. Natarajan, New topological indices with very high discriminatory power, SAR QSAR Environ. Res. 22 (2011), pp. 1–20. doi:10.1080/1062936X.2010.528611.
  • I. Gutman, A formula for the Wiener number of trees and its extension to graphs containing cycles, Graph Theory Notes N. Y. 27 (1994), pp. 9–15.
  • N. Tratnik, The edge-Szeged index and the PI index of benzenoid systems in linear time, MATCH Commun. Math. Comput. Chem. 77 (2017), pp. 393–406.
  • T. Došlić, I. Martinjak, R. Škrekovski, S. Tipurić Spužević, and I. Zubac, Mostar index, J. Math. Chem. 56 (2018), pp. 2995–3013. doi:10.1007/s10910-018-0928-z.
  • M. Arockiaraj, J. Clement, and N. Tratnik, Mostar indices of carbon nanostructures and circumscribed donut benzenoid systems, Int. J. Quantum Chem. 119 (2019), pp. e26043. doi:10.1002/qua.26043.
  • S. Brezovnik and N. Tratnik, New methods for calculating the degree distance and the Gutman index, MATCH Commun. Math. Comput. Chem. 82 (2019), pp. 111–132.
  • A. Ilić and N. Milosavljević, The weighted vertex PI index, Math. Comput. Model. 57 (2013), pp. 623–631. doi:10.1016/j.mcm.2012.08.001.
  • N. Tratnik, Computing weighted Szeged and PI indices from quotient graphs, Int. J. Quantum Chem. 119 (2019), pp. e26006. doi:10.1002/qua.v119.21.
  • D. Djoković, Distance preserving subgraphs of hypercubes, J. Combin. Theory Ser. B 14 (1973), pp. 263–267. doi:10.1016/0095-8956(73)90010-5.
  • P. Winkler, Isometric embeddings in products of complete graphs, Discrete Appl. Math. 7 (1984), pp. 221–225. doi:10.1016/0166-218X(84)90069-6.
  • M. Arockiaraj, J. Clement, and K. Balasubramanian, Topological indices and their applications to circumcised donut benzenoid systems, Kekulenes and drugs, Polycycl. Aromat. Comp.  38 (2018). doi:10.1080/10406638.2017.1411958.
  • N. Tratnik, Computing the Mostar index in networks with applications to molecular graphs. Available at https://arxiv.org/abs/1904.04131.
  • I. Gutman and S.J. Cyvin, Introduction to the Theory of Benzenoid Hydrocarbons, Springer-Verlag, Berlin, 1989.
  • R. Hammack, W. Imrich, and S. Klavžar, Handbook of Product Graphs, CRC Press, Boca Raton, 2011.
  • V. Chepoi, On distances in benzenoid systems, J. Chem. Inf. Comput. Sci. 36 (1996), pp. 1169–1172. doi:10.1021/ci9600869.
  • B. Chazelle, Triangulating a simple polygon in linear time, Discrete Comput. Geom. 6 (1991), pp. 485–524. doi:10.1007/BF02574703.
  • H.P. Boehm, R. Setton, and E. Stumpp, Nomenclature and terminology of graphite intercalation compounds, Carbon 24 (1986), pp. 241–245. doi:10.1016/0008-6223(86)90126-0.
  • K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, and A.A. Firsov, Electric field in atomically thin carbon films, Science 306 (2004), pp. 666–669. doi:10.1126/science.1102896.
  • A.K. Geim and K.S. Novoselov, The rise of graphene, Nat. Mater. 6 (2007), pp. 183–191. doi:10.1038/nmat1849.
  • M. Arockiaraj, J. Clement, and K. Balasubramanian, Analytical expressions for topological properties of polycyclic benzenoid networks, J. Chemometr. 30 (2016), pp. 682–697. doi:10.1002/cem.2851.
  • M.M. Haley, S.C. Brand, and J.J. Pak, Carbon networks based on dehydrobenzoannulenes: Synthesis of graphdiyne substructures, Angew. Chem. Int. Ed. 36 (1997), pp. 836–838. doi:10.1002/(ISSN)1521-3773.
  • M. Arockiaraj, S. Klavžar, S. Mushtaq, and K. Balasubramanian, Topological indices of the subdivision of a family of partial cubes and computation of SiO2 related structures, J. Math. Chem. 57 (2019), pp. 1868–1883. doi:10.1007/s10910-019-01043-y.
  • K. Balasubramanian, J.J. Kaufman, W.S. Koski, and A.T. Balaban, Graph theoretical characterization and computer generation of certain carcinogenic benzenoid hydrocarbons and identification of bay regions, J. Comput. Chem. 1 (1980), pp. 149–157. doi:10.1002/(ISSN)1096-987X.
  • K. Balasubramanian and M. Randić, The characteristic polynomials of structures with pending bonds, Theor. Chim. Acta 61 (1982), pp. 307–323. doi:10.1007/BF00550410.
  • K. Balasubramanian and P.Y. Feng, Potential-energy surfaces for H and H interactions, J. Chem. Phys. 92 (1990), pp. 541–550. doi:10.1063/1.458457.
  • D. Majumdar, S. Roszak, and K. Balasubramanian, Theoretical study of the interaction of benzene with and cations, J. Chem. Phys. 107 (1997), pp. 408–414. doi:10.1063/1.474402.
  • K. Balasubramanian, Relativistic Effects in Chemistry Part A: Theory and Techniques, Wiley, New York, 1997.
  • T. Parsons-Moss, L.K. Schwaiger, A. Hubaud, Y.J. Hu, H. Tuysuz, P. Yang, K. Balasubramanian, and H. Nitsche, Plutonium complexation by phosphonate-functionalized mesoporous silica, No. LLNL-CONF–461496, Lawrence Livermore National Laboratory, CA, USA, 2010.
  • L.K. Schwaiger, T. Parsons-Moss, A. Hubaud, H. Tueysuez, K. Balasubramanian, P. Yang, and H. Nitsche, Actinide and lanthanide complexation by organically modified mesoporous silica, Abstracts of papers of the American Chemical Society, 239 (2010). 98-NUCL. MAR 21 2010, WOS:000208189303645
  • S.C. Basak, D. Mills, M.M. Mumtaz, and K. Balasubramanian, Use of topological indices in predicting aryl hydrocarbon receptor binding potency of dibenzofurans: A hierarchical QSAR approach, Ind. J. Chem. A 42A (2003), pp. 1385–1391.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.