637
Views
11
CrossRef citations to date
0
Altmetric
Articles

Elucidating the aryl hydrocarbon receptor antagonism from a chemical-structural perspective

ORCID Icon, , , , , & show all
Pages 209-226 | Received 09 Nov 2019, Accepted 19 Dec 2019, Published online: 09 Jan 2020

References

  • D.W. Nebert, Aryl hydrocarbon receptor (AHR): “Pioneer member” of the basic-helix/loop/helix per-Arnt-sim (bHLH/PAS) family of “sensors” of foreign and endogenous signals, Prog. Lipid Res. 67 (2017), pp. 38–57. doi:10.1016/j.plipres.2017.06.001.
  • K. Kawajiri and Y. Fuji-Kuriyama, The aryl hydrocarbon receptor: A multifunctional chemical sensor for host defense and homeostatic maintenance, Exp. Anim. 66 (2016), pp. 75–89. doi:10.1538/expanim.16-0092.
  • K.W. Bock, From TCDD-mediated toxicity to searches of physiologic AHR functions, Biochem. Pharmacol. 155 (2018), pp. 419–424. doi:10.1016/j.bcp.2018.07.032.
  • R. Pohjanvirta, The AH Receptor in Biology and Toxicology, John Wiley and Sons, Hoboken, NJ, 2011.
  • L. Bonati, D. Corrada, S. Giani Tagliabue, and S. Motta, Molecular modeling of the AhR structure and interactions can shed light on ligand-dependent activation and transformation mechanisms, Curr. Opin. Toxicol. 2 (2017), pp. 42–49. doi:10.1016/j.cotox.2017.01.011.
  • T. Hamers, J.H. Kamstra, P.H. Cenijn, K. Pencikova, L. Palkova, P. Simeckova, J. Vondracek, P.L. Andersson, M. Stenberg, and M. Machala, In vitro toxicity profiling of ultrapure non-dioxin-like polychlorinated biphenyl congeners and their relative toxic contribution to PCB mixtures in humans, Toxicol. Sci. 121 (2011), pp. 88–100. doi:10.1093/toxsci/kfr043.
  • P. Brenerová, T. Hamers, J.H. Kamstra, J. Vondráček, S. Strapáčová, P.L. Andersson, and M. Machala, Pure non-dioxin-like PCB congeners suppress induction of AhR-dependent endpoints in rat liver cells, Environ. Sci. Pollut. Res. 23 (2016), pp. 2099–2107. doi:10.1007/s11356-015-4819-6.
  • L. Stejskalova, Z. Dvorak, and P. Pavek, Endogenous and exogenous ligands of aryl hydrocarbon receptor: Current state of art, Curr. Drug Metab. 12 (2011), pp. 198–212. doi:10.2174/138920011795016818.
  • G.A. Reed, K.S. Peterson, H.J. Smith, J.C. Gray, D.K. Sullivan, M.S. Mayo, J.A. Crowell, and A. Hurwitz, A phase I study of indole-3-carbinol in women: Tolerability and effects, Cancer Epidemiol. Biomarkers Prev. 14 (2005), pp. 1953–1960. doi:10.1158/1055-9965.EPI-05-0121.
  • O. Hankinson, The role of AHR-inducible cytochrome P450s in metabolism of polyunsaturated fatty acids, Drug Metab. Rev. 48 (2016), pp. 342–350. doi:10.1080/03602532.2016.1197240.
  • A. Puga, Y. Xia, and C. Elferink, Role of the aryl hydrocarbon receptor in cell cycle regulation, Chem. Biol. Interact. 141 (2002), pp. 117–130. doi:10.1016/S0009-2797(02)00069-8.
  • C. Esser, A. Rannug, and B. Stockinger, The aryl hydrocarbon receptor in immunity, Trends Immunol. 30 (2009), pp. 447–454. doi:10.1016/j.it.2009.06.005.
  • C. Duval, E. Blanc, and X. Coumoul, Aryl hydrocarbon receptor and liver fibrosis, Curr. Opin. Toxicol. 8 (2018), pp. 8–13. doi:10.1016/j.cotox.2017.11.010.
  • K. Pěnčíková, L. Svržková, S. Strapáčová, J. Neča, I. Bartoňková, Z. Dvořák, M. Hýžďalová, J. Pivnička, L. Pálková, H.J. Lehmler, X. Li, J. Vondráček, and M. Machala, In vitro profiling of toxic effects of prominent environmental lower-chlorinated PCB congeners linked with endocrine disruption and tumor promotion, Environ. Pollut. 237 (2018), pp. 473–486. doi:10.1016/j.envpol.2018.02.067.
  • S. Safe, S.O. Lee, and U.H. Jin, Role of the aryl hydrocarbon receptor in carcinogenesis and potential as a drug target, Toxicol. Sci. 135 (2013), pp. 1–16. doi:10.1093/toxsci/kft128.
  • Z. Xue, D. Li, W. Yu, Q. Zhang, X. Hou, Y. He, and X. Kou, Mechanisms and therapeutic prospects of polyphenols as modulators of the aryl hydrocarbon receptor, Food Funct. 8 (2017), pp. 1414–1437. doi:10.1039/C6FO01810F.
  • R. Nakai, S. Fukuda, M. Kawase, Y. Yamashita, and H. Ashida, Curcumin and its derivatives inhibit 2,3,7,8,-tetrachloro-dibenzo-p-dioxin-induced expression of drug metabolizing enzymes through aryl hydrocarbon receptor-mediated pathway, Biosci. Biotechnol. Biochem. 82 (2017), pp. 616–628. doi:10.1080/09168451.2017.1386086.
  • H. Kandárová and S. Letaáiová, Alternative methods in toxicology: Pre-validated and validated methods, Interdiscip. Toxicol. 4 (2011), pp. 107–113. doi:10.2478/v10102-011-0018-6.
  • A. Cherkasov, E.N. Muratov, D. Fourches, A. Varnek, I.I. Baskin, M. Cronin, J. Dearden, P. Gramatica, Y.C. Martin, R. Todeschini, V. Consonni, V.E. Kuz’min, R. Cramer, R. Benigni, C. Yang, J. Rathman, L. Terfloth, J. Gasteiger, A. Richard, and A. Tropsha, QSAR modeling: Where have you been? Where are you going to? J. Med. Chem. 57 (2014), pp. 4977–5010. doi:10.1021/jm4004285.
  • L.G. Valerio, C. Yang, K.B. Arvidson, and N.L. Kruhlak, A structural feature-based computational approach for toxicology predictions, Expert Opin. Drug Metab. Toxicol. 6 (2010), pp. 505–518. doi:10.1517/17425250903499286.
  • D. Szöllösi, Á. Erdei, G. Gyimesi, C. Magyar, and T. Hegedüs, Access path to the ligand binding pocket may play a role in xenobiotics selection by AhR, PLoS ONE 11 (2016), pp. 1–22. doi:10.1371/journal.pone.0146066.
  • A.D. Şahin and M.T. Saçan, Understanding the toxic potencies of xenobiotics inducing TCDD/TCDF-like effects, SAR QSAR Environ. Res. 29 (2018), pp. 117–131. doi:10.1080/1062936X.2017.1414075.
  • M.K. Gadhwal, S. Patil, P. D’mello, and A. Joshi, Homology modeling of aryl hydrocarbon receptor and docking of agonists and antagonists, Int. J. Pharm. Pharm. Sci. 5 (2013), pp. 76–81.
  • D. Dolciami, M. Gargaro, B. Cerra, G. Scalisi, L. Bagnoli, G. Servillo, M.A.D. Fazia, P. Puccetti, F.J. Quintana, F. Fallarino, and A. Macchiarulo, Binding mode and structure–activity relationships of ITE as an aryl hydrocarbon receptor (AhR) agonist, ChemMedChem 13 (2018), pp. 270–279. doi:10.1002/cmdc.201700669.
  • S.-H. Seok, W. Lee, L. Jiang, K. Molugu, A. Zheng, Y. Li, S. Park, C.A. Bradfield, and Y. Xing, Structural hierarchy controlling dimerization and target DNA recognition in the AHR transcriptional complex, Proc. Natl. Acad. Sci. 114 (2017), pp. 5431–5436. doi:10.1073/pnas.1617035114.
  • G. Suzuki, M. Nakamura, C. Michinaka, N.M. Tue, H. Handa, and H. Takigami, Dioxin-like activity of brominated dioxins as individual compounds or mixtures in in vitro reporter gene assays with rat and mouse hepatoma cell lines, Toxicol. Vitro 44 (2017), pp. 134–141. doi:10.1016/j.tiv.2017.06.025.
  • S. Sciuto, M. Prearo, R. Desiato, C. Bulfon, E.A.V. Burioli, G. Esposito, C. Guglielmetti, L. Dell’atti, G. Ru, D. Volpatti, P.L. Acutis, and F. Martucci, Dioxin-like compounds in lake fish species: Evaluation by DR-CALUX bioassay, J. Food Prot. 81 (2018), pp. 842–847. doi:10.4315/0362-028X.JFP-17-476.
  • A.L.J. Nuerla, X.L. Qiao, J. Li, D.M. Zhao, X.H. Yang, Q. Xie, and J.W. Chen, Effects of substituent position on the interactions between PBDEs/PCBs and DOM, Chin. Sci. Bull. 58 (2013), pp. 884–889. doi:10.1007/s11434-012-5464-9.
  • R. Panda, A.S.S. Cleave, and P. Suresh, In silico predictive studies of mAHR congener binding using homology modelling and molecular docking, Toxicol. Ind. Health 30 (2014), pp. 765–776. doi:10.1177/0748233712463774.
  • H.F. Berntsen, V. Berg, C. Thomsen, E. Ropstad, and K.E. Zimmer, The design of an environmentally relevant mixture of persistent organic pollutants for use in in vivo and in vitro studies, J. Toxicol. Environ. Health Part A 24 (2017), pp. 1002–1016. doi:10.1080/15287394.2017.1354439.
  • A.J. Murk, J. Legler, M.S. Denison, J.P. Giesy, C. Van de Guchte, and A. Brouwer, Chemical-activated luciferase gene expression (CALUX): A novel in vitro bioassay for Ah receptor active compounds in sediments and pore water, Fundam. Appl. Toxicol. 33 (1996), pp. 149–160. doi:10.1006/faat.1996.0152.
  • OECD, Test No. 455: Performance-Based Test Guideline for Stably Transfected Transactivation in Vitro Assays to Detect Estrogen Receptor Agonists and Antagonists, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris, 2016.
  • R. Todeschini and V. Consonni, Molecular Descriptors for Chemoinformatics, WILEY-VCH, Weinheim, Germany, 2009.
  • C.W. Yap, PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints, J. Comput. Chem. 32 (2011), pp. 1466–1474. doi:10.1002/jcc.v32.7.
  • R.W.P. Urias, S.J. Barigye, Y. Marrero-Ponce, C.R. García-Jacas, J.R. Valdes-Martiní, and F. Perez-Gimenez, IMMAN: Free software for information theory-based chemometric analysis, Mol. Divers. 19 (2015), pp. 305–319. doi:10.1007/s11030-014-9565-z.
  • MATLAB MathWorks Inc R2017b 9.3.0.713579, MathWorks Inc, USA, 2017. software. Available at https://www.mathworks.com/.
  • STATISTICA StatSoft Inc v8.0. StatSoft Inc, USA, 2007. software. Available at http://www.statsoft.com.
  • J. Jaworska and N. Nikolova-Jeliazkova, How can structural similarity analysis help in category formation? SAR QSAR Environ. Res. 18 (2007), pp. 195–207. doi:10.1080/10629360701306050.
  • S. Kim, P.A. Thiessen, E.E. Bolton, J. Chen, G. Fu, A. Gindulyte, L. Han, J. He, S. He, B.A. Shoemaker, J. Wang, B. Yu, J. Zhang, and S.H. Bryant, PubChem substance and compound databases, Nucleic Acids Res. 44 (2016), pp. D1202–D1213. doi:10.1093/nar/gkv951.
  • S.L. Dixon, A.M. Smondyrev, and S.N. Rao, PHASE: A novel approach to pharmacophore modeling and 3D database searching, Chem. Biol. Drug Des. 67 (2006), pp. 370–372. doi:10.1111/j.1747-0285.2006.00384.x.
  • J.F. Truchon and C.I. Bayly, Evaluating virtual screening methods: Good and bad metrics for the “early recognition” problem, J. Chem. Inf. Model. 47 (2007), pp. 488–508. doi:10.1021/ci600426e.
  • M.M. Mysinger, M. Carchia, J.J. Irwin, and B.K. Shoichet, Directory of useful decoys, enhanced (DUD-E): Better ligands and decoys for better benchmarking, J. Med. Chem. 55 (2012), pp. 6582–6594. doi:10.1021/jm300687e.
  • T. Hamers, J.H. Kamstra, E. Sonneveld, A.J. Murk, M.H.A. Kester, P.L. Andersson, J. Legler, and A. Brouwer, In vitro profiling of the endocrine-disrupting potency of brominated flame retardants, Toxicol. Sci. 92 (2006), pp. 157–173. doi:10.1093/toxsci/kfj187.
  • C. Sammut and G. Webb (eds.), Encyclopedia of Machine Learning and Data Mining, 2nd ed., Vol. 32, Springer, New York, NY, 2018.
  • M. Ghorbanzadeh, K.I. Van Ede, M. Larsson, M.B.M. Van Duursen, L. Poellinger, S. Lücke-Johansson, M. Machala, K. Pěnčíková, J. Vondráček, M. van den Berg, M.S. Denison, T. Ringsted, and P.L. Andersson, In vitro and in silico derived relative effect potencies of ah-receptor-mediated effects by PCDD/Fs and PCBs in rat, mouse, and guinea pig CALUX cell lines, Chem. Res. Toxicol. 27 (2014), pp. 1120–1132. doi:10.1021/tx5001255.
  • OECD, Guidance Document on the Validation of (Quantitative) Structure-Activity Relationship [(Q)SAR] Models, 2014. OECD Series on Testing and Assessment OECD, No. 69, OECD Publishing, Paris.
  • O.F. Güner and J.P. Bowen, Setting the record straight: The origin of the pharmacophore concept, J. Chem. Inf. Model. 54 (2014), pp. 1269–1283. doi:10.1021/ci5000533.
  • D.P. Williams, Toxicophores: Investigations in drug safety, Toxicology 226 (2006), pp. 1–11. doi:10.1016/j.tox.2006.05.101.
  • P.K. Singh, A. Negi, P.K. Gupta, M. Chauhan, and R. Kumar, Toxicophore exploration as a screening technology for drug design and discovery: Techniques, scope and limitations, Arch. Toxicol. 90 (2016), pp. 1785–1802. doi:10.1007/s00204-015-1587-5.
  • L. Chen, D. Wu, H.P. Bian, G.L. Kuang, J. Jiang, W.H. Li, G.X. Liu, S. Zou, J. Huang, and Y. Tang, Selective ligands of estrogen receptor β discovered using pharmacophore mapping and structure-based virtual screening, Acta Pharmacol. Sin. 35 (2014), pp. 1333–1341. doi:10.1038/aps.2014.69.
  • S.S. Ashtekar, N.M. Bhatia, and M.S. Bhatia, Development of leads targeting ER-α in breast cancer: An in silico exploration from natural domain, Steroids 131 (2018), pp. 14–22. doi:10.1016/j.steroids.2017.12.016.
  • N. Lagarde, S. Delahaye, A. Jérémie, N. Ben Nasr, H. Guillemain, C. Empereur-Mot, V. Laville, T. Labib, M. Réau, F. Langenfeld, J.F. Zagury, and M. Montes, Discriminating agonist from antagonist ligands of the nuclear receptors using different chemoinformatics approaches, Mol. Inf. 36 (2017), pp. 1–16. doi:10.1002/minf.201700020.
  • R.T. Engeli, S.R. Rohrer, A. Vuorinen, S. Herdlinger, T. Kaserer, S. Leugger, D. Schuster, and A. Odermatt, Interference of paraben compounds with estrogen metabolism by inhibition of 17β-hydroxysteroid dehydrogenases, Int. J. Mol. Sci. 18 (2017). doi:10.3390/ijms18092007.
  • I.T. Jolliffe, Principal Component Analysis, 2nd ed., Vol. 98, Springer-Verlag, New York, NY, 2002.
  • K. Schomburg, H. Ehrlich, K. Stierand, and M. Rarey, From structure diagrams to visual chemical patterns, J. Chem. Inf. Model. 50 (2010), pp. 1529–1535. doi:10.1021/ci100209a.
  • L. Poellinger and D. Gullberg, Characterization of the hydrophobic properties of the receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin, Mol. Pharmacol. 27 (1985), pp. 271–276.
  • T. Tripathi and A.K. Saxena, 2D- QSAR studies on new stilbene derivatives of resveratrol as a new selective aryl hydrocarbon receptor, Med. Chem. Res. 17 (2008), pp. 212–218. doi:10.1007/s00044-007-9055-2.
  • Y. Xing, M. Nukaya, K.A. Satyshur, L. Jiang, V. Stanevich, E.N. Korkmaz, L. Burdette, G.D. Kennedy, Q. Cui, and C.A. Bradfield, Identification of the Ah-receptor structural determinants for ligand preferences, Toxicol. Sci. 129 (2012), pp. 86–97. doi:10.1093/toxsci/kfs194.
  • K. Bekki, H. Takigami, G. Suzuki, N. Tang, and K. Hayakawa, Evaluation of toxic activities of polycyclic aromatic hydrocarbon derivatives using in vitro bioassays, J. Health Sci. 55 (2009), pp. 601–610. doi:10.1248/jhs.55.601.
  • C. Gu, X. Ju, X. Jiang, K. Yu, S. Yang, and C. Sun, Improved 3D-QSAR analyzes for the predictive toxicology of polybrominated diphenyl ethers with CoMFA/CoMSIA and DFT, Ecotoxicol. Environ. Saf. 73 (2010), pp. 1470–1479. doi:10.1016/j.ecoenv.2009.11.003.
  • C.R. Martinez and B.L. Iverson, Rethinking the term “pi-stacking,” Chem. Sci. 3 (2012), pp. 2191–2201.
  • R.C. Kolanczyk, J.S. Denny, B.R. Sheedy, P.K. Schmieder, and M.A. Tapper, Estrogenic activity of multicyclic aromatic hydrocarbons in rainbow trout (Oncorhynchus mykiss) in vitro assays, Aquat. Toxicol. (2019), pp. 43–51. doi:10.1016/j.aquatox.2018.11.023.
  • C. Yun, J.A. Weiner, D.S. Chun, J. Yun, R.W. Cook, M.S. Schallmo, A.S. Kannan, S.M. Mitchell, R.D. Freshman, C. Park, W.K. Hsu, and E.L. Hsu, Mechanistic insight into the effects of Aryl hydrocarbon receptor activation on osteogenic differentiation, Bone Rep. 6 (2017), pp. 51–59. doi:10.1016/j.bonr.2017.02.003.
  • C.A. McQueen (ed.), Comprehensive Toxicology, 3rd ed., Vol. 35, Elsevier, Oxford, UK, 2018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.