194
Views
4
CrossRef citations to date
0
Altmetric
Articles

Discriminations of active from inactive HDAC8 inhibitors Part II: Bayesian classification study to find molecular fingerprints

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 245-260 | Received 29 Nov 2019, Accepted 26 Jan 2020, Published online: 19 Feb 2020

References

  • S.A. Amin, N. Adhikari, and T. Jha, Diverse classes of HDAC8 inhibitors: In search of molecular fingerprints that regulate activity, Future Med. Chem. 10 (2018), pp. 1589–1602. doi: 10.4155/fmc-2018-0005.
  • S.A. Amin, N. Adhikari, and T. Jha, Is dual inhibition of metalloenzymes HDAC-8 and MMP-2 a potential pharmacological target to combat hematological malignancies? Pharmacol. Res. 122 (2017), pp. 8–19. doi: 10.1016/j.phrs.2017.05.002.
  • M.M. Müller and T.W. Muir, Histones: At the crossroads of peptide and protein chemistry, Chem. Rev. 115 (2015), pp. 2296–2349. doi: 10.1021/cr5003529
  • A. Chakrabarti, I. Oehme, O. Witt, G. Oliveira, W. Sippl, C. Romier, R.J. Pierce, and M. Jung, HDAC8: A multifaceted target for therapeutic interventions, Trends Pharmacol. Sci. 36 (2015), pp. 481–492. doi: 10.1016/j.tips.2015.04.013
  • J. Roche and P. Bertrand, Inside HDACs with more selective HDAC inhibitors, Eur. J. Med. Chem. 121 (2016), pp. 451–483. doi: 10.1016/j.ejmech.2016.05.047.
  • S.A. Amin, N. Adhikari, and T. Jha, Structure–activity relationships of hydroxamate-based histone deacetylase-8 inhibitors: Reality behind anticancer drug discovery, Future Med. Chem. 9 (2017), pp. 2211–2237. doi: 10.4155/fmc-2017-0130
  • P. Bertrand, Inside HDAC with HDAC inhibitors, Eur. J. Med. Chem. 45 (2010), pp. 2095–2116. doi: 10.1016/j.ejmech.2010.02.030.
  • S. Banerjee, N. Adhikari, S.A. Amin, and T. Jha, Histone deacetylase 8 (HDAC8) and its inhibitors with selectivity to other isoforms: An overview, Eur. J. Med. Chem. 164 (2019), pp. 214–240. doi: 10.1016/j.ejmech.2018.12.039.
  • A. Chakrabarti, J. Melesina, F.R. Kolbinger, I. Oehme, J. Senger, O. Witt, W. Sippl, and M. Jung, Targeting histone deacetylase 8 as a therapeutic approach to cancer and neurodegenerative diseases, Future Med. Chem. 8 (2016), pp. 1609–1634. doi: 10.4155/fmc-2016-0117.
  • I.V. Gregoretti, Y.M. Lee, and H.V. Goodson, Molecular evolution of the histone deacetylase family: Functional implications of phylogenetic analysis, J. Mol. Biol. 338 (2004), pp. 17–31. doi: 10.1016/j.jmb.2004.02.006.
  • B. Wolff, N. Jänsch, W.O. Sugiarto, S. Frühschulz, M. Lang, R. Altintas, I. Oehme, and F.-J. Meyer-Almes, Synthesis and structure activity relationship of 1, 3-benzo-thiazine-2-thiones as selective HDAC8 inhibitors, Eur. J. Med. Chem. 184 (2019), pp. 111756. doi: 10.1016/j.ejmech.2019.111756
  • J.R. Somoza, R.J. Skene, B.A. Katz, C. Mol, J.D. Ho, A.J. Jennings, C. Luong, A. Arvai, J.J. Buggy, E. Chi, J. Tang, B.C. Sang, E. Verner, R. Wynands, E.M. Leahy, D.R. Dougan, G. Snell, M. Navre, M.W. Knuth, R.V. Swanson, D.E. McRee, and L.W. Tari, Structural snapshots of human HDAC8 provide insights into the class I histone deacetylases, Structure 12 (2004), pp. 1325–1334. doi: 10.1016/j.str.2004.04.012.
  • M. Marek, T.B. Shaik, T. Heimburg, A. Chakrabarti, J. Lancelot, E. Ramos-Morales, C. Da Veiga, D. Kalinin, J. Melesina, D. Robaa, K. Schmidtkunz, T. Suzuki, R. Holl, E. Ennifar, R.J. Pierce, M. Jung, W. Sippl, and C. Romier, Characterization of histone deacetylase 8 (HDAC8) selective inhibition reveals specific active site structural and functional determinants, J. Med. Chem. 61 (2018), pp. 10000–10016. doi: 10.1021/acs.jmedchem.8b01087
  • N. Adhikari, S.A. Amin, and T. Jha, Selective and nonselective HDAC8 inhibitors: A therapeutic patent review, Pharm. Pat. Anal. 7 (2018), pp. 259–276. doi: 10.4155/ppa-2018-0019
  • B.S. Mann, J.R. Johnson, M.H. Cohen, R. Justice, and R. Pazdur, FDA approval summary: Vorinostat for treatment of advanced primary cutaneous T-cell lymphoma, Oncologist 12 (2007), pp. 1247–1252. doi: 10.1634/theoncologist.12-10-1247.
  • A. Quintás-Cardama, H. Kantarjian, Z. Estrov, G. Borthakur, J. Cortes, and S. Verstovsek, Therapy with the histone deacetylase inhibitor pracinostat for patients with myelofibrosis, Leuk. Res. 36 (2012), pp. 1124–1127. doi: 10.1016/j.leukres.2012.03.003
  • H.Z. Lee, V.E. Kwitkowski, P.L. Del Valle, M.S. Ricci, H. Saber, B.A. Habtemariam, J. Bullock, E. Bloomquist, Y. Li Shen, X.H. Chen, J. Brown, N. Mehrotra, S. Dorff, R. Charlab, R.C. Kane, E. Kaminskas, R. Justice, A.T. Farrell, and R. Pazdur, FDA approval: Belinostat for the treatment of patients with relapsed or refractory peripheral T-cell lymphoma, Clin. Cancer Res. 21 (2015), pp. 2666–2670. doi: 10.1158/1078-0432.CCR-14-3119
  • M.P. Fenichel, FDA approves new agent for multiple myeloma, J. Natl. Cancer Inst. 107 (2015), pp. 6–7. doi: 10.1093/jnci/djv165.
  • X. Lu, Z. Ning, Z. Li, H. Cao, and X. Wang, Development of chidamide for peripheral T-cell lymphoma, the first orphan drug approved in China, Intract. Rare Dis. Res. 5 (2016), pp. 185–191. doi: 10.5582/irdr.2016.01024
  • R.D. Cramer, The inevitable QSAR renaissance, J. Comput. Aided Mol. Des. 26 (2012), pp. 35–38. doi: 10.1007/s10822-011-9495-0.
  • G. Lambrinidis and A. Tsantili-Kakoulidou, Challenges with multi-objective QSAR in drug discovery, Expert Opin. Drug Discov. 13 (2018), pp. 851–859. doi: 10.1080/17460441.2018.1496079.
  • P. Polishchuk, Interpretation of quantitative structure-activity relationship models: Past, present, and future, J. Chem. Inf. Model. 57 (2017), pp. 2618–2639. doi: 10.1021/acs.jcim.7b00274.
  • Y.C. Lo, S.E. Rensi, W. Torng, and R.B. Altman, Machine learning in chemoinformatics and drug discovery, Drug Discov. Today 23 (2018), pp. 1538–1546. doi: 10.1016/j.drudis.2018.05.010.
  • J.O. Berger, Statistical Decision Theory and Bayesian Analysis, Springer Science & Business Media, New York, 2013.
  • G.E.P. Box and G.C. Tiao, Bayesian Inference in Statistical Analysis, John Wiley & Sons, New York, 2011.
  • S. Banerjee, N. Adhikari, S.A. Amin, and T. Jha, Structural exploration of tetrahydroisoquinoline derivatives as HDAC8 inhibitors through multi-QSAR modeling study, J. Biomol. Struct. Dyn. (2019), pp. 1–14. doi: 10.1080/07391102.2019.1617782
  • S.A. Amin, N. Adhikari, and T. Jha, Development of decision trees to discriminate HDAC8 inhibitors and non-inhibitors using recursive partitioning, J. Biomol. Struct. Dyn. (2019), pp. 1–8. doi: 10.1080/07391102.2019.1661876
  • Binding Data Base (Binding DB) a tool, available at http://www.bindingdb.org/ (accessed Oct 10, 2017).
  • Discovery Studio 3.0 (DS 3.0), Accelrys Inc., CA, USA, 2015; available at http://www.accelrys.com.
  • M. Cruz-Monteagudo, J.L. Medina-Franco, Y. Pérez-Castillo, O. Nicolotti, M.N. Cordeiro, and F. Borges, Activity cliffs in drug discovery: Dr Jekyll or Mr Hyde? Drug Discov. Today 19 (2014), pp. 1069–1080. doi: 10.1016/j.drudis.2014.02.003.
  • C.A. Lipinski, F. Lombardo, B.W. Dominy, and P.J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug. Deliv. Rev. 46 (2001), pp. 3–26. doi: 10.1016/S0169-409X(00)00129-0.
  • D.F. Veber, S.R. Johnson, H.Y. Cheng, B.R. Smith, K.W. Ward, and K.D. Kopple, Molecular properties that influence the oral bioavailability of drug candidates, J. Med. Chem. 45 (2002), pp. 2615–2623. doi: 10.1021/jm020017n.
  • B. Bhardwaj, A.T.K. Baidya, S.A. Amin, N. Adhikari, T. Jha, and S. Gayen, Insight into structural features of phenyltetrazole derivatives as ABCG2 inhibitors for the treatment of multidrug resistance in cancer, SAR QSAR Environ. Res. 30 (2019), pp. 457–475. doi: 10.1080/1062936X.2019.1615545.
  • S.A. Amin, N. Adhikari, S. Bhargava, T. Jha, and S. Gayen, Structural exploration of hydroxyethylamines as HIV-1 protease inhibitors: New features identified, SAR QSAR Environ. Res. 29 (2018), pp. 385–408. doi: 10.1080/1062936X.2018.1447511.
  • T. Jha, N. Adhikari, A. Saha, and S.A. Amin, Multiple molecular modelling studies on some derivatives and analogues of glutamic acid as matrix metalloproteinase-2 inhibitors, SAR QSAR Environ. Res. 29 (2018), pp. 43–68. doi: 10.1080/1062936X.2017.1406986.
  • X.Y. Xia, E.G. Maliski, P. Gallant, and D. Rogers, Classification of kinase inhibitors using a bayesian model, J. Med. Chem. 47 (2004), pp. 4463–4470. doi: 10.1021/jm0303195.
  • D. Rogers, R.D. Brown, and M. Hahn, Using extended-connectivity fingerprints with Laplacian-modified Bayesian analysis in high-throughput screening follow-up, J. Biomol. Screen. 10 (2005), pp. 682–686. doi: 10.1177/1087057105281365.
  • A.E. Klon, J.F. Lowrie, and D.J. Diller, Improved naive Bayesian modeling of numeriacl data for absorption, distribution, metabolism and excretion (ADME) property prediction, J. Chem. Inf. Model. 46 (2006), pp. 1945–1956. doi: 10.1021/ci0601315.
  • P. Prathipati, N.L. Ma, and T.H. Keller, Global bayesian models for the prioritization of antitubercular agents, J. Chem. Inf. Model. 48 (2008), pp. 2362–2370. doi: 10.1021/ci800143n.
  • D. Rogers and M. Hahn, Extended-connectivity fingerprints, J. Chem. Inf. Model. 50 (2010), pp. 742–754. doi: 10.1021/ci100050t.
  • T. Fawcett, An introduction to ROC analysis, Pattern Recognit. Lett. 27 (2006), pp. 861–874. doi: 10.1016/j.patrec.2005.10.010.
  • J.C. Bressi, R. de Jong, Y. Wu, A.J. Jennings, J.W. Brown, S. O’Connell, L.W. Tari, R.J. Skene, P. Vu, M. Navre, X. Cao, and A.R. Gangloff, Benzimidazole and imidazole inhibitors of histone deacetylases: Synthesis and biological activity, Bioorg. Med. Chem. Lett. 20 (2010), pp. 3138–3141. doi: 10.1016/j.bmcl.2010.03.092.
  • S. Mahboobi, A. Sellmer, H. Höcher, C. Garhammer, H. Pongratz, T. Maier, T. Ciossek, and T. Beckers, 2-aroylindoles and 2-aroylbenzofurans with N-hydroxyacrylamide substructures as a novel series of rationally designed histone deacetylase inhibitors, J. Med. Chem. 50 (2007), pp. 4405–4418. doi: 10.1021/jm0703136.
  • S. Balasubramanian, J. Ramos, W. Luo, M. Sirisawad, E. Verner, and J.J. Buggy, A novel histone deacetylase 8 (HDAC8)-specific inhibitor PCI-34051 induces apoptosis in T-cell lymphomas, Leukemia 22 (2008), pp. 1026–1034. doi: 10.1038/leu.2008.9.
  • J. Cai, H. Wei, K.H. Hong, X. Wu, X. Zong, M. Cao, P. Wang, L. Li, C. Sun, B. Chen, G. Zhou, J. Chen, and M. Ji, Discovery, bioactivity and docking simulation of Vorinostat analogues containing 1,2,4-oxadiazole moiety as potent histone deacetylase inhibitors and antitumor agents, Bioorg. Med. Chem. 23 (2015), pp. 3457–3471. doi: 10.1016/j.bmc.2015.04.028.
  • D.R. Reddy, F. Ballante, N.J. Zhou, and G.R. Marshall, Design and synthesis of benzodiazepine analogs as isoform-selective human lysine deacetylase inhibitors, Eur. J. Med. Chem. 127 (2017), pp. 531–553. doi: 10.1016/j.ejmech.2016.12.032.
  • C.M. Marson, C.J. Matthews, S.J. Atkinson, N. Lamadema, and N.S. Thomas, Potent and selective inhibitors of histone deacetylase-3 containing chiral oxazoline capping groups and a N-(2-aminophenyl)-benzamide binding unit, J. Med. Chem. 58 (2015), pp. 6803–6818. doi: 10.1021/acs.jmedchem.5b00545.
  • C.L. Hamblett, J.L. Methot, D.M. Mampreian, D.L. Sloman, M.G. Stanton, A.M. Kral, J.C. Fleming, J.C. Cruz, M. Chenard, N. Ozerova, A.M. Hitz, H. Wang, S.V. Deshmukh, N. Nazef, A. Harsch, B. Hughes, W.K. Dahlberg, A.A. Szewczak, R.E. Middleton, R.T. Mosley, J.P. Secrist, and T.A. Miller, The discovery of 6-amino nicotinamides as potent and selective histone deacetylase inhibitors, Bioorg. Med. Chem. Lett. 17 (2007), pp. 5300–5309. doi: 10.1016/j.bmcl.2007.08.023.
  • G.P. Cao, M. Arooj, S. Thangapandian, C. Park, V. Arulalapperumal, Y. Kim, Y.J. Kwon, H.H. Kim, J.K. Suh, and K.W. Lee, A lazy learning-based QSAR classification study for screening potential histone deacetylase 8 (HDAC8) inhibitors, SAR QSAR Environ. Res. 26 (2015), pp. 397–420. doi: 10.1080/1062936X.2015.1040453.
  • G.P. Cao, S. Thangapandian, M. Son, R. Kumar, Y.J. Choi, Y. Kim, Y.J. Kwon, H.H. Kim, J.K. Suh, and K.W. Lee, QSAR modeling to design selective histone deacetylase 8 (HDAC8) inhibitors, Arch. Pharm. Res. 39 (2016), pp. 1356–1369. doi: 10.1007/s12272-015-0705-5.
  • S. Debnath, T. Debnath, S. Bhaumik, S. Majumdar, A.M. Kalle, and V. Aparna, Discovery of novel potential selective HDAC8 inhibitors by combine ligand-based, structurebased virtual screening and in-vitro biological evaluation, Sci. Rep. 9 (2019), pp. 17174. doi: 10.1038/s41598-019-53376-y.
  • C.A. Luckhurst, O. Aziz, V. Beaumont, R.W. Bürli, P. Breccia, M.C. Maillard, A.F. Haughan, M. Lamers, P. Leonard, K.L. Matthews, G. Raphy, A.J. Stott, I. Munoz-Sanjuan, B. Thomas, M. Wall, G. Wishart, D. Yates, and C. Dominguez, Development and characterization of a CNS-penetrant benzhydryl hydroxamic acid class IIa histone deacetylase inhibitor, Bioorg. Med. Chem. Lett. 29 (2019), pp. 83–88. doi: 10.1016/j.bmcl.2018.11.009.
  • P. Trivedi, N. Adhikari, S.A. Amin, Y. Bobde, R. Ganesh, T. Jha, and B. Ghosh, Design, synthesis, biological evaluation and molecular docking study of arylcarboxamido piperidine and piperazine-based hydroxamates as potential HDAC8 inhibitors with promising anticancer activity, Eur. J. Pharm. Sci. 138 (2019), pp. 105046. doi: 10.1016/j.ejps.2019.105046.
  • K. Vögerl, N. Ong, J. Senger, D. Herp, K. Schmidtkunz, M. Marek, M. Müller, K. Bartel, T.B. Shaik, N.J. Porter, D. Robaa, D.W. Christianson, C. Romier, W. Sippl, M. Jung, and F. Bracher, Synthesis and biological investigation of phenothiazine-based benzhydroxamic acids as selective histone deacetylase 6 inhibitors, J. Med. Chem. 62 (2019), pp. 1138–1166. doi: 10.1021/acs.jmedchem.8b01090.
  • K. Tilekar, N. Upadhyay, N. Jänsch, M. Schweipert, P. Mrowka, F.J. Meyer-Almes, and C. Ramaa, Discovery of 5-naphthylidene-2,4-thiazolidinedione derivatives as selective HDAC8 inhibitors and evaluation of their cytotoxic effects in leukemic cell lines, Bioorg. Chem. 95 (2019), pp. 103522. doi: 10.1016/j.bioorg.2019.103522.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.