199
Views
7
CrossRef citations to date
0
Altmetric
Articles

Quantitative weight of evidence method for combining predictions of quantitative structure-activity relationship models

ORCID Icon & ORCID Icon
Pages 261-279 | Received 25 Oct 2019, Accepted 30 Jan 2020, Published online: 17 Feb 2020

References

  • European Commission, Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC, Off. J. Eur. Union. L396 (2006), pp. 1–849.
  • W.M.S. Russell and R.L. Burch, The Principles of Humane Experimental Technique, Methuen, London, 1959.
  • European Parliament and European Council, Directive 2010/63/EU of the European Parliament and the Council of 22 September 2010 on the protection of animals used for scientific purposes, Off. J. Eur. Union. L276 (2010), pp. 33–79.
  • C.L. Wilkins and M. Randic, A graph theoretical approach to structure-property and structure-activity correlations, Theor. Chimica Acta 58 (1980), pp. 45–68. doi:10.1007/BF00635723.
  • G.M. Maggiora and V. Shanmugasundaram, Molecular similarity measures, in Chemoinformatics. Concepts, Methods, and Tools for Drug Discovery, J. Bajorath, ed., Human Press Inc, Totowa, 2004, pp. 1–2.
  • A.Z. Dudek, T. Arodz, and J. Gálvez, Computational methods in developing quantitative structure-activity relationships (QSAR): A review, Comb. Chem. High Throughput Screen. 9 (2006), pp. 213–228. doi:10.2174/138620706776055539.
  • J. Devillers and E. Mombelli, Evaluation of the OECD QSAR application Toolbox and Toxtree for estimating the mutagenicity of chemicals. Part 1. Aromatic amines, SAR QSAR Environ. Res. 21 (2010), pp. 753–769. doi:10.1080/1062936X.2010.528959.
  • OECD, Report from the expert group on (quantitative) structure-activity relationships (Q)SAR on the principles for the validation of (Q)SARs, Environment, Health and Safety Publications, OECD, Series on Testing and assessment, No. 49, 2004.
  • W. Dekant and J. Bridges, Assessment of reproductive and developmental effects of DINP, DnHP and DCHP using quantitative weight of evidence, Regul. Toxicol. Pharmacol. 81 (2016), pp. 397–406.
  • C.M. Ellison, J.C. Madden, P. Judson, and M.T.D. Cronin, Using in silico tools in a weight of evidence approach to aid toxicological assessment, Mol. Inform. 29 (2010), pp. 97–110. doi:10.1002/minf.200900006.
  • L. Eriksson, J. Jaworska, A.P. Worth, M.T.D. Cronin, R.M. McDowell, and P. Gramatica, Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs, Environ. Health Perpect. 111 (2003), pp. 1361–1375. doi:10.1289/ehp.5758.
  • ICH, ICH, ICH-M7 (R1) Assessment and Control of DNA Reactive (Mutagenic) Impurities in Pharmaceuticals to Limit Potential Carcinogenic Risk, 2017; available at http://www.ich.org.
  • A. Cassano, G. Raitano, E. Mombelli, A. Fernandez, J. Cester, A. Roncaglioni, and E. Benfenati, Evaluation of QSAR models for the prediction of Ames genotoxicity: A retrospective exercise on the chemical substances registered under the EU REACH regulation, J. Environ. Sci. Health C. Environ. Carcinog. Ecotoxicol. Rev. 32 (2014), pp. 273–298. doi:10.1080/10590501.2014.938955.
  • R. Benigni and A. Guiliani, Computer-assisted analysis of interlaboratory Ames test variability, J. Toxicol. Environ. Health 25 (1988), pp. 135–148. doi:10.1080/15287398809531194.
  • M. Kamber, S. Flückiger-Isler, G. Engelhardt, R. Jaeckh, and E. Zeiger, Comparison of the Ames II and traditional Ames test responses with respect to mutagenicity, strain specificities, need for metabolism and correlation with rodent carcinogenicity, Mutagenesis 24 (2009), pp. 359–366. doi:10.1093/mutage/gep017.
  • W.W. Piegorsch and E. Zeiger, Measuring intra-assay agreement for the Ames Salmonella assay, in statistical methods in toxicology, in Lecture Notes in Medical Informatics, L. Hothorn, ed., Springer-Verlag, Berlin, 1991, pp. 35–41.
  • I. Sushko, S. Novotarskyi, R. Körner, A.K. Pandey, A. Cherkasov, J. Li, P. Gramatica, K. Hansen, T. Schroeter, K.-R. Müller, L. Xi, H. Liu, X. Yao, T. Öberg, F. Hormozdiari, P. Dao, C. Sahinalp, R. Todeschini, P. Polishchuk, A. Artemenko, V. Kuz’min, T.M. Martin, D.M. Young, D. Fourches, E. Muratov, A. Tropsha, I. Baskin, D. Horvath, G. Marcou, C. Muller, A. Varnek, V.V. Prokopenko, and I.V. Tetko, Applicability domains for classification problems: Benchmarking of distance to models for Ames mutagenicity set,J. Chem. Inf. Model. 50 (2010), pp. 2094–2111. doi:10.1021/ci100253r.
  • K. Watanabe, K. Sakamoto, and T. Sasaki, Collaborative study of interlaboratory variability in Salmonella typhimurium TA102 and TA2638 and Escherichia coli WP2/pKM101 and WP2 uvrA/pKM101, Mutagenesis 10 (1995), pp. 235–241. doi:10.1093/mutage/10.3.235.
  • H. Buist, T. Aldenberg, M. Batke, S. Escher, R.K. Entink, R. Kühne, H. Marquart, E. Pauné, E. Rorije, G. Schüürmann, and D. Kroese, The OSIRIS weight of evidence approach: ITS mutagenicity and ITS carcinogenicity, Regul. Toxicol. Pharmacol. 67 (2013), pp. 170–181. doi:10.1016/j.yrtph.2013.01.002.
  • J. Pet-Edwards, Y.Y. Haimes, V. Chankong, H.S. Rosenkranz, and F.K. Ennever, Battery Selection in Risk Assessment and Decision Making Using Test Results. The Carcinogenicity Prediction and Battery Selection Approach, Plenum Press, New York, 1989.
  • J.A. Cooper, R. Saracci, and P. Cole, Describing the validity of carcinogen screening tests, Br. J. Cancer 39 (1979), pp. 87–89. doi:10.1038/bjc.1979.10.
  • B.W. Matthews, Comparison of the predicted and observed secondary structure of T4 phage lysozyme, Biochim. Biophys. Acta 405 (1975), pp. 442–451. doi:10.1016/0005-2795(75)90109-9.
  • P. Baldi, S. Brunak, Y. Chauvin, C.A.F. Andersen, and H. Nielsen, Assessing the accuracy of prediction algorithms for classification: An overview, Bioinf. Rev. 16 (2000), pp. 412–424. doi:10.1093/bioinformatics/16.5.412.
  • J. Cohen, A coefficient of agreement for nominal scales, Educ. Psychol. Meas. 20 (1960), pp. 37–46. doi:10.1177/001316446002000104.
  • R. Landis and G. Koch, The measurement of observer agreement for categorical data, Biometrics 33 (1977), pp. 159–174. doi:10.2307/2529310.
  • EFSA Scientific Committee, A. Hardy, D. Benford, T. Halldorson, M.J. Jeger, H.K. Knutsen, S. More, H. Naegeli, H. Noteborn, C. Ockleford, A. Ricci, G. Rychen, J.R. Schlatter, V. Silano, R. Solecki, D. Turck, E. Benfenati, Q.M. Chaudhry, P. Craig, G. Frampton, M. Greiner, A. Hart, C. Hogstrand, C. Lambre, R. Luttik, D. Makowski, A. Siani, H. Wahlstroem, J. Aguilera, J.-L. Dorne, A.F. Dumont, M. Hempen, S.V. Martinez, L. Martino, C. Smeraldi, A. Terron, N. Georgiadis, and M. Younes, Scientific opinion on the guidance on the use of the weight of evidence approach in scientific assessments, EFSA J. 15 (2017), pp. 4971–5040.
  • W. Dekant and J. Bridges, A quantitative weight of evidence methodology for the assessment of reproductive and developmental toxicity and its application for classification and labeling of chemicals, Regul. Toxicol. Pharmacol. 82 (2016), pp. 173–185. doi:10.1016/j.yrtph.2016.09.009.
  • European Chemicals Agency, Practical Guide: How to Use Alternatives to Animal Testing to Fulfil Your Information Requirements for REACH Registration, European Chemical Agency, Helsinki, Finland, 2016.
  • E.J. Matthews, N.L. Kruhlak, R.D. Benz, J.F. Contrera, C.A. Marchant, and C. Yang, Combined use of MC4PC, MDL-QSAR, BioEpisteme, Leadscope PDM, and Derek for Windows software to achieve high-performance, high-confidence, mode of action-based predictions of chemical carcinogenesis in rodents, Toxicol. Mech. Meth. 18 (2008), pp. 189–206. doi:10.1080/15376510701857379.
  • A.C. White, R.A. Mueller, R.H. Gallavan, S. Aaron, and A.G.E. Wilson, A multiple in silico program approach for the prediction of mutagenicity from chemical structure, Mutat. Res. 539 (2003), pp. 77–89. doi:10.1016/S1383-5718(03)00135-9.
  • E. Rorije, T. Aldenberg, H. Buist, D. Kroese, and G. Schüürmann, The OSIRIS weight of evidence approach: ITS for skin sensitisation, Regul. Toxicol. Pharmacol. 67 (2013), pp. 146–156. doi:10.1016/j.yrtph.2013.06.003.
  • I.J. Good, Probability and the Weighing of Evidence, Charles Griffin & Company Limited, London, 1950.
  • H. Jeffreys, Theory of Probability. Appendix B, Oxford University Press, Oxford, 1961.
  • R.E. Kass and A.E. Raftery, Bayes factors, J. Am. Stat. Assoc. 90 (1995), pp. 773–795. doi:10.1080/01621459.1995.10476572.
  • D. Brusick, Screening Chemicals for Genotoxic Properties in Principles of Genotoxic Toxicology, Springer, Boston, MA, 1987.
  • J. Kittler, M. Hatef, R.P.W. Duin, and J. Matas, On combining classifiers, IEEE Trans. Pattern Anal. Mach. Intell. 20 (1998), pp. 226–239. doi:10.1109/34.667881.
  • I.A. Gardner, H. Stryhn, P. Lind, and M.T. Collins, Conditional dependence between tests affects the diagnosis and surveillance of animal diseases, Prev. Vet. Med. 45 (2000), pp. 107–122. doi:10.1016/S0167-5877(00)00119-7.
  • M.P. Georgiadis, W.O. Johnson, I.A. Gardner, and R. Singh, Correlation-adjusted estimation of sensivity and specificity of two diagnostic tests, Appl. Stat. 52 (2003), pp. 63–76.
  • Lazar toxicity predictions 1.4.2. In Silico Toxicology Gmbh, Basel, Switzerland, 2019; software available at https://lazar.in-silico.ch/predict.
  • A. Maunz, M. Gütlein, M. Rautenberg, D. Vorgrimmler, and D. Gebele, Lazar: A modular predictive toxicology framework, Front. Pharmacol. 4 (2013), pp. 1–10. doi:10.3389/fphar.2013.00038.
  • VEGA in Silico Platform, 1.1.5 (CAESAR), Istituto Di Ricerche Farmacologiche Mario Negri, Milan, Italy, 2019; software available at https://www.vegahub.eu/.
  • N.G. Bakhtyari, G. Raitano, E. Benfenati, T. Martin, and D. Young, Comparison of in silico models for prediction of mutagenicity, J. Environ. Sci. Health Part C 31 (2013), pp. 45–66. doi:10.1080/10590501.2013.763576.
  • T. Ferrari and G. Gini, An open source multistep model to predict mutagenicity from statistical analysis and relevant structural alerts, Chem. Cent. J. 4 (Suppl 1) (2010), pp. 1–6. doi:10.1186/1752-153X-4-S1-S2.
  • Toxicity Estimation Software Tool (T.E.S.T.), 4.2.1, Unites States Environmental Protection Agency, Durham, NC; software available at https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-test.
  • Online Chemical Modeling Enviroment (OCHEM) 1, 2013; software available at http://www.ochem.eu.
  • I. Sushko, S. Novotarskyi, R. Körner, A.K. Pandey, M. Rupp, W. Teetz, S. Brandmaier, A. Abdelaziz, V.V. Prokopenko, V.Y. Tanchuk, R. Todeschini, A. Varnek, G. Marcou, P. Ertl, V. Potemkin, M. Grishina, J. Gasteiger, C. Schwab, I.I. Baskin, V.A. Palyulin, E.V. Radchenko, W.J. Welsh, V. Kholodovych, D. Chekmarev, A. Cherkasov, J. Aires-de-Sousa, Q.-Y. Zhang, A. Bender, F. Nigsch, L. Patiny, A. Williams, W. Tkachenko, and I.V. Tetko, Online chemical modeling environment (OCHEM): Web platform for data storage, model development and publishing of chemical information, J. Comput. Aided Mol. Des. 25 (2011), pp. 533–554. doi:10.1007/s10822-011-9440-2.
  • European Commission, Joint Research Center, Carcinogenicity Genotoxicity Experience (CGX) dataset, 2018; database available at https://data.jrc.ec.europa.eu/dataset/jrc-eurl-ecvam-genotoxicity-carcinogenicity-Ames/resource/4e9f9f21-2b99-451e-93b5-C2324d59c4e2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.