102
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Two spectral QSPR models of porphyrin macromolecules for chelating heavy metals and different ligands released from industrial solvents: CH2Cl2, CHCl3 and toluene

, , &
Pages 347-371 | Received 26 Jan 2020, Accepted 23 Mar 2020, Published online: 28 May 2020

References

  • Y. Ding, W.H. Zhu, and Y. Xie, Development of ion chemosensors based on porphyrin analogues, Chem. Rev. 117 (2016), pp. 2203‒2256. doi:10.1021/acs.chemrev.6b00021
  • Y. Liang, Ultrafast dynamics of metalloporphyrins, DNA and iron-lanthanide clusters in the liquid phase, Ph.D. diss., Karlsruhe Institute of Technology, Germany, 2013.
  • R. Capuano, R. Paolesse, and C. Di Natale, In-vivo and in-vitro metabolomics with porphyrins based sensor arrays, Meeting Abstracts, Electrochem. Soc. (2018). doi:10.1149/ma2018-01/12/993.
  • M. Imran, M. Ramzan, A. Qureshi, M.A. Khan, and M. Tariq, Emerging applications of porphyrins and metalloporphyrins in biomedicine and diagnostic magnetic resonance imaging, Biosensors 8 (2018), pp. 95‒112. doi:10.3390/bios8040095
  • R. Zare-Dorabei, R. Rahimi, A. Koohi, and S. Zargari, Preparation and characterization of a novel tetrakis(4-hydroxyphenyl)porphyrin–graphene oxide nanocomposite and application in an optical sensor and determination of mercury ions, Rsc Adv. 5 (2015), pp. 93310‒93317. doi:10.1039/C5RA17047H
  • M.R. Jafari and B. Bahrami, Emission properties of porphyrin compounds in new polymeric PS: CBP host, Appl. Phys. A 119 (2015), pp. 1491‒1497. doi:10.1007/s00339-015-9126-z
  • R.W. Hooper, A. Zhang, D. Koszelewski, J.P. Lewtak, and B. Koszarna, Differential quenching of the angular momentum of the B and Q bands of a porphyrin as a result of extended ring π-conjugation, J. Porphyrins Phthalocyanines 22 (2018), pp. 1111‒1128. doi:10.1142/S1088424618501110
  • O. Finikova, A. Galkin, V. Rozhkov, M. Cordero, C. Hägerhäll, and S. Vinogradov, Porphyrin and tetrabenzoporphyrin dendrimers: Tunable membrane-impermeable fluorescent pH nanosensors, J. Am. Chem. Soc. 125 (2003), pp. 4882‒4893. doi:10.1021/ja0341687
  • F. Liu, K.L. Cunningham, W. Uphues, G.W. Fink, J. Schmolt, and D.R. McMillin, Luminescence quenching of copper(II) porphyrins with Lewis bases, Inorg. Chem. 34 (1995), pp. 2015‒2018. doi:10.1021/ic00112a011
  • M. Lan, H. Zhao, H. Yuan, C. Jiang, S. Zuo, and Y. Jiang, Absorption and EPR spectra of some porphyrins and metalloporphyrins, Dyes Pigm. 74 (2007), pp. 357‒362. doi:10.1016/j.dyepig.2006.02.018
  • Z. Valicsek and O. Horváth, Application of the electronic spectra of porphyrins for analytical purposes: The effects of metal ions and structural distortions, Microchem. J. 107 (2013), pp. 47‒62. doi:10.1016/j.microc.2012.07.002
  • O. Horváth, Z. Valicsek, M.A. Fodor, M.M. Major, M. Imran, G. Grampp, and A. Wankmüller, Visible light-driven photophysics and photochemistry of water-soluble metalloporphyrins, Coord. Chem. Rev. 325 (2016), pp. 59‒66. doi:10.1016/j.ccr.2015.12.011
  • S. Frühbeißer, J.P. Fuenzalida Werner, and F. Gröhn, Metalloporphyrin–polyelectrolyte assemblies in aqueous solution: Influence of the metal center and the polyelectrolyte architecture, J. Polym. Sci., Part B: Polym. Phys. 56 (2018), pp. 484‒500. doi:10.1002/polb.24557
  • S. Zakavi and S. Hoseini, The absorption and fluorescence emission spectra of meso-tetra(aryl)porphyrin dications with weak and strong carboxylic acids: A comparative study, RSC Adv. 5 (2015), pp. 106774‒106786. doi:10.1039/C5RA20445C
  • T.V. Esipova, H.J. Rivera-Jacquez, B. Weber, A.E. Masunov, and S.A. Vinogradov, Two-photon absorbing phosphorescent metalloporphyrins: Effects of π-extension and peripheral substitution, J. Am. Chem. Soc. 138 (2016), pp. 15648‒15662. doi:10.1021/jacs.6b09157
  • D.K. Lavallee, Visible absorption spectra of N-methyltetraphenylporphyrin complexes, Bioinorg. Chem. 6 (1976), pp. 219‒227. doi:10.1016/S0006-3061(00)80228-8
  • S. Chatterjee, K. Sengupta, S. Bhattacharyya, A. Nandi, S. Samanta, K. Mittra, and A. Dey, Photophysical and ligand binding studies of metalloporphyrins bearing hydrophilic distal superstructure, J. Porphyrins Phthalocyanines 17 (2013), pp. 210‒219. doi:10.1142/S1088424613500119
  • Y.J. Zhang, J. Shi, W. Liu, and M. Yu, 5,10,15,20-Tetra(N-long chain-alkyl carbazole)porphyrin and their lanthanide complexes, Synth. React. Inorg. Met. Org. Nano Met. Chem. 43 (2013), pp. 640‒646. doi:10.1080/15533174.2012.749899
  • A. Merhi, X. Zhang, D. Yao, S. Drouet, O. Mongin, F. Paul, J.A. Gareth Williams, M.A. Fox, and C.O. Paul-Roth, New donor–acceptor conjugates based on a trifluorenylporphyrin linked to a redox–switchable ruthenium unit, Dalton Trans. 44 (2015), pp. 9470‒9485. doi:10.1039/C5DT00348B
  • G. Prabhavathi, R. Yamuna, and A.C. Jafer, Covalent functionalization and solubilization of multi-walled carbon nanotubes by using zinc and copper complexes of meso-tetra(4-aminophenyl)porphyrin, J. Organomet. Chem. 861 (2018), pp. 219‒229. doi:10.1016/j.jorganchem.2018.02.031
  • Y. Wan, Y. Xue, N. Sheng, G. Rui, C. Lv, J. He, B. Gu, and Y. Cui, Solvent effects on the fluorescence and effective three-photon absorption of a Zn(II)-[meso-tetrakis(4-octyloxyphenyl)porphyrin], Opt. Laser Technol. 102 (2018), pp. 47‒53. doi:10.1016/j.optlastec.2017.12.018
  • E.J. Shin and D. Kim, Substituent effect on the fluorescence quenching of various tetraphenylporphyrins by ruthenium tris(2,2′-bipyridine) complex, J. Photochem. Photobiol. A 152 (2002), pp. 25‒31. doi:10.1016/S1010-6030(02)00189-2
  • G. Zięba, M. Rojkiewicz, V. Kozik, K. Jarzembek, A. Jarczyk, A. Sochanik, and P. Kuś, The synthesis of new potential photosensitizers. 1. Mono-carboxylic acid derivatives of tetraphenylporphyrin, Monatsh. Chem. 143 (2012), pp. 153‒159. doi:10.1007/s00706-011-0586-3
  • P. Kuś, V. Kozik, M. Rojkiewicz, A. Sochanik, A. Szurko, M. Kempa, P. Kozub, M. Rams-Baron, K. Jarzembek, M. Stefaniak, and J. Sakowicz, The synthesis of new potential photosensitizers. Part 3. Tetraphenylporphyrin esters of profens, Dyes Pigm. 116 (2015), pp. 46‒51. doi:10.1016/j.dyepig.2015.01.011
  • R.W. Wagner, D.S. Lawrence, and J.S. Lindsey, An improved synthesis of tetramesitylporphyrin, Tetrahedron Lett. 28 (1987), pp. 3069‒3070. doi:10.1016/S0040-4039(00)96287-7
  • A.K. Burrell, D.L. Officer, D.C.W. Reid, S.M. Scott, and K.C. Gordon, Spectroscopic properties of porphyrin dimers incorporating phenylenevinylene linkers, J. Porphyrins Phthalocyanines 4 (2000), pp. 627‒634. doi:10.1002/1099-1409(200009/10)4:6<627::AID-JPP232>3.0.CO;2-M
  • Z.-C. Sun, Y.-B. She, Y. Zhou, X.-F. Song, and K. Li, Synthesis, characterization and spectral properties of substituted tetraphenylporphyrin iron chloride complexes, Molecules 16 (2011), pp. 2960‒2970. doi:10.3390/molecules16042960
  • T. Kangwanwong, W. Pluempanupat, W. Parasuk, H.E. Keenanb, and A. Songsasen, Using 5,10,15,20-tetra(4-nitrophenyl)porphyrin as a fluorescent chemosensor to determine Ru3+, Sci. Asia. 38 (2012), pp. 278‒282. doi:10.2306/scienceasia1513-1874.2012.38.27
  • S. Zakavi, R. Omidyan, L. Ebrahimi, and F. Heidarizadi, Substitution effects on the UV–vis and 1H NMR spectra of the dications of meso and/or β substituted porphyri0ns with trifluoroacetic acid: Electron-deficient porphyrins compared to the electron-rich ones, Inorg. Chem. Commun. 14 (2011), pp. 1827‒1832. doi:10.1016/j.inoche.2011.08.019
  • Y. Shi, W. Zheng, Z. Li, X. Wang, D. Wang, S. Qiu, and X. Li, Electro-optical properties investigation of a series of hydroxylphenylporphyrins, Opt. Mater. 28 (2006), pp. 1178‒1186. doi:10.1016/j.optmat.2005.08.002
  • M.T. Phromsatit, Synthesis and characterization of meso-tetraphenylporphyrin derivatives and their copper(II) complexes, Master Degree thesis, Thammasat University, 2015.
  • H. Shahroosvand, N. Safari, and E. Mohajerani, Effects of different light irradiations on structure and optical properties of methoxy-substituted tetraphenylporphyrins, J. Iran. Chem. Soc. 11 (2014), pp. 1173‒1182. doi:10.1007/s13738-013-0385-3
  • H. Razavi, E. Mohajerani, N. Safari, H. Shahroosvand, and A. Khabbazi, Electroluminescence and photoluminescence in porphyrin derived compounds in a new polymeric PVK: PBD host, J. Porphyrins Phthalocyanines 16 (2012), pp. 396‒402. doi:10.1142/S1088424612500642
  • M.E. Milanesio, M.G. Alvarez, E.I. Yslas, C.D. Borsarelli, J.J. Silber, V. Rivarola, and E.N. Durantini, Photodynamic studies of metallo 5,10,15,20‐tetrakis(4‐methoxyphenyl)porphyrin: Photochemical characterization and biological consequences in a human carcinoma cell line, Photochem. Photobiol. 74 (2001), pp. 14‒21. doi:10.1562/0031-8655(2001)0740014PSOMTM2.0.CO2
  • T. Dang, S. Durot, L. Monnereau, V. Heitz, A. Barbieri, and B. Ventura, Highlight on the solution processes occurring on silver(I)-assembling porphyrins in the presence of an excess of silver salt, Dalton Trans. 46 (2017), pp. 9375‒9381. doi:10.1039/C7DT00974G
  • S.N. Song, D.M. Li, J.F. Wu, C.F. Zhuang, H. Ding, W.B. Song, L.F. Cui, G.Z. Cao, and G.F. Liu, Syntheses and characterization of molybdenum/zinc porphyrin dimers bridged by aromatic linkers, Eur. J. Inorg. Chem. 2007 (2007), pp. 1844‒1853. doi:10.1002/ejic.200600853
  • S. Singto, S. Tantayanon, C.A. Zoto, and R.E. Connors, Syntheses and photophysical properties of diaminotetraphenylporphyrins and their corresponding polyimides, J. Mol. Struct. 1154 (2018), pp. 114‒130. doi:10.1016/j.molstruc.2017.09.091
  • N. Chaudhri, N. Sawhney, B. Madhusudhan, A. Raghav, M. Sankar, and S. Satapathi, Effect of functional groups on sensitization of dye-sensitized solar cells (DSSCs) using free base porphyrins, J. Porphyrins Phthalocyanines 21 (2017), pp. 222‒230. doi:10.1142/S1088424617500390
  • J.C. Biazzotto, H.C. Sacco, K.J. Ciuffi, C.R. Neri, A.G. Ferreira, Y. Iamamoto, and O.A. Serra, Synthesis of hybrid silicates containing porphyrins incorporated by a sol–gel process and their properties, J. Non-Cryst. Solids 247 (1999), pp. 134‒140. doi:10.1016/S0022-3093(99)00050-2
  • M. Gervaldo, F. Fungo, E.N. Durantini, J.J. Silber, L. Sereno, and L. Otero, Carboxyphenyl metalloporphyrins as photosensitizers of semiconductor film electrodes. A study of the effect of different central metals, J. Phys. Chem. B 109 (2005), pp. 20953‒20962. doi:10.1021/jp0536596
  • R. Kumar, P. Yadav, A. Kumar, and M. Sankar, Facile synthesis and electrochemical studies of diethoxyphosphorylphenyl-substituted porphyrin and its metal complexes, Chem. Lett. 44 (2015), pp. 914‒916. doi:10.1246/cl.150233
  • J. Jiang, J.R. Swierk, K.L. Materna, S. Hedström, O.H. Lee, R.H. Crabtree, C.A. Schmuttenmaer, V.S. Batista, and G.W. Brudvig, High-potential porphyrins supported on SnO2 and TiO2 surfaces for photoelectrochemical applications, J. Phys. Chem. C 120 (2016), pp. 28971‒28982. doi:10.1021/acs.jpcc.6b10350
  • W.S. Wun, J.H. Chen, S.S. Wang, J.Y. Tung, F.L. Liao, S.L. Wang, L.P. Hwang, and S. Elango, Cadmium complexes of meso-tetra-(p-chlorophenyl)porphyrin: [meso-tetra-(p-chlorophenyl)porphyrinato](pyridine) cadmium(II) pyridine solvate and [meso-tetra-(p-chlorophenyl)porphyrinato](dimethylformamide) cadmium(II) toluene solvate, Inorg. Chem. Commun. 7 (2004), pp. 1233‒1237. doi:10.1016/j.inoche.2004.09.015
  • N. Amiri, F.B. Taheur, S. Chevreux, E. Wenger, G. Lemercier, and H. Nasri, Synthesis, crystal structure and spectroscopic characterizations of porphyrin-based Mg(II) complexes–Potential application as antibacterial agent, Tetrahedron 73 (2017), pp. 7011‒7016. doi:10.1016/j.tet.2017.10.029
  • M. Tao, X. Zhou, M. Jing, D. Liu, and J. Xing, Fluorescence and electrochemical properties of naphthylporphyrins and porphyrin–anthraquinone dyads, Dyes Pigm. 75 (2007), pp. 408‒412. doi:10.1016/j.dyepig.2006.06.022
  • M. Tao, D. Liu, M. Zhang, X. Zhou, and L. Li, Synthesis and spectral property study of porphyrin-anthraquinone dyads bonded through azo, J. Porphyrins Phthalocyanines 14 (2010), pp. 219‒226. doi:10.1142/S1088424610001933
  • O. Penon, A.J. Moro, D. Santucci, D.B. Amabilino, J.C. Lima, L. Pérez-García, and L. Rodríguez, Molecular recognition of aliphatic amines by luminescent Zn-porphyrins, Inorg. Chim. Acta 417 (2014), pp. 222‒229. doi:10.1016/j.ica.2013.12.028
  • C.O. Paul-Roth and G. Simonneaux, Porphyrins with fluorenyl and fluorenone pendant arms, Tetrahedron Lett. 47 (2006), pp. 3275‒3278. doi:10.1016/j.tetlet.2006.03.031
  • C.O. Paul-Roth, S. Drouet, A. Merhi, J.A.G. Williams, L.F. Gildea, C. Pearson, and M.C. Petty, Synthesis of platinum complexes of fluorenyl-substituted porphyrins used as phosphorescent dyes for solution-processed organic light-emitting devices, Tetrahedron 69 (2013), pp. 9625‒9632. doi:10.1016/j.tet.2013.09.034
  • N. Amiri, M. Hajji, F.B. Taheur, S. Chevreux, T. Roisnel, G. Lemercier, and H. Nasri, Two novel magnesium(II) meso-tetraphenylporphyrin-based coordination complexes: Syntheses, combined experimental and theoretical structures elucidation, spectroscopy, photophysical properties and antibacterial activity, J. Solid State Chem. 258 (2018), pp. 477‒484. doi:10.1016/j.jssc.2017.11.018
  • J. Manono, P.A. Marzilli, F.R. Fronczek, and L.G. Marzilli, New porphyrins bearing pyridyl peripheral groups linked by secondary or tertiary sulfonamide groups: Synthesis and structural characterization, Inorg. Chem. 48 (2009), pp. 5626‒5635. doi:10.1021/ic900600z
  • L. Giribabu, C.V. Kumar, and P.Y. Reddy, Porphyrin-rhodanine dyads for dye sensitized solar cells, J. Porphyrins Phthalocyanines 10 (2006), pp. 1007‒1016. doi:10.1142/S1088424606000351
  • R.R. Reddy, B. Basumatary, M. Murugavel, K. Keshav, A.R. Sekhar, and J. Sankar, Sterically hindered 5,15-tetraphenylbenzene-porphyrins: Syntheses, structures, atropisomerism and photophysical properties, J. Chem. Sci. 130 (2018), pp. 81‒92. doi:10.1007/s12039-018-1485-5
  • R. Sharma, P. Gautam, R. Misra, and S.K. Shukla, β-Substituted triarylborane appended porphyrins: Photophysical properties and anion sensing, RSC Adv. 5 (2015), pp. 27069‒27074. doi:10.1039/C5RA03931B
  • F.R. Kooriyaden, S. Sujatha, and C. Arunkumar, Synthesis, spectral, structural and antimicrobial studies of fluorinated porphyrins, Polyhedron 97 (2015), pp. 66‒74. doi:10.1016/j.poly.2015.05.018
  • M. Kunieda, E. Nakato, and H. Tamiaki, Optical properties of synthetic porphyrins bearing or lacking an exo-five-membered ring and a keto carbonyl group on it, both of which are present in naturally occurring chlorophylls, J. Photochem. Photobiol. A 185 (2007), pp. 321‒330. doi:10.1016/j.jphotochem.2006.06.027
  • N.M. Boyle, J. Rochford, and M.T. Pryce, Thienyl—appended porphyrins: Synthesis, photophysical and electrochemical properties, and their applications, Coord. Chem. Rev. 254 (2010), pp. 77‒102. doi:10.1016/j.ccr.2009.09.001
  • D. Marek, M. Narra, A. Schneider, and S. Swavey, Synthesis, characterization and electrode adsorption studies of porphyrins coordinated to ruthenium(II) polypyridyl complexes, Inorg. Chim. Acta 359 (2006), pp. 789‒799. doi:10.1016/j.ica.2005.04.037
  • E.Z. Moreira, A.D. Ferreira, C.R. Neri, S. Mukhopadhyay, S. Dovidauskas, S. Nikolaou, and Y. Iamamoto, Syntheses, electrochemistry and photophysical properties of a series of meso-pyridylpentafluorophenylporphyrins, J. Porphyrins Phthalocyanines 14 (2010), pp. 975‒984. doi:10.1142/S108842461000280X
  • R. Tiwari and M. Nath, Synthesis of 2-nitro-3-(pyrrol-1-yl)-5,10,15,20-tetraarylporphyrins via a Clauson-Kaas reaction and the study of their electronic properties, New J. Chem. 39 (2015), pp. 5500‒5506. doi:10.1039/C5NJ00014A
  • R. Boscencu, R. Socoteanu, M. Ilie, R. Bandula, A.S. Oliveira, and L.F.V. Ferreira, Spectral propreties of copper(II) and zinc(II) complexes with mesoporphyrinic ligands in micellar media, Rev. Chim. 61 (2010), pp. 135‒139.
  • S. Nasri, I. Zahou, I. Turowska‐Tyrk, T. Roisnel, F. Loiseau, E. Saint‐Amant, and H. Nasri, Synthesis, electronic spectroscopy, cyclic voltammetry, photophysics, electrical properties and X‐ray molecular structures of meso‐{Tetrakis[4‐(benzoyloxy)phenyl]porphyrinato} zinc(II) complexes with aza ligands, Eur. J. Inorg. Chem. 2016 (2016), pp. 5004‒5019. doi:10.1002/ejic.201600575
  • Z. Denden, K. Ezzayani, E. Saint‐Aman, F. Loiseau, S. Najmudin, C. Bonifácio, J.C. Daran, and H. Nasri, Insights on the UV/Vis, fluorescence, and cyclic voltammetry properties and the molecular structures of Zn(II)-tetraphenylporphyrin complexes with pseudohalide axial azido, cyanato‐N, thiocyanato‐N, and cyanido ligands, Eur. J. Inorg. Chem. (2015), pp. 2596‒2610. doi:10.1002/ejic.201403214.
  • D. Kim and E.J. Shin, Noncovalently linked zinc porphyrin-Ru(bpy)~3 dyad assembled via axial coordination, Bull. Korean Chem. Soc. 24 (2003), pp. 1490‒1494.
  • R. Soury, M. Jabli, T.A. Saleh, W.S. Abdul-Hassan, E. Saint-Aman, F. Loiseau, C. Philouze, A. Bujacz, and H. Nasri, Synthesis of the (4,4′-bipyridine)(5,10,15,20-tetratolylphenylporphyrinato) zinc(II) bis(4,4-bipyridine) disolvate dehydrate and evaluation of its interaction with organic dyes, J. Mol. Liq. 264 (2018), pp. 134‒142. doi:10.1016/j.molliq.2018.05.050.
  • S. Drouet, A. Merhi, G. Argouarch, F. Paul, O. Mongin, M. Blanchard-Desce, and C.O. Paul-Rothab, Synthesis of new luminescent supramolecular assemblies from fluorenyl porphyrins and polypyridyl isocyanurate-based spacers, Tetrahedron 68 (2012), pp. 98–105. doi:10.1016/j.tet.2011.10.081
  • N. Venkatramaiah, B. Ramakrishna, A.R. Kumar, N. Veeraiah, and R. Venkatesan, Enhanced stokes shift of S2→ S0 emission and structural investigations of Sn(IV) porphyrins doped hybrid borate glasses, J. Alloys Compd. 513 (2012), pp. 318‒323. doi:10.1016/j.jallcom.2011.09.105
  • S.J. Dammer, Synthesis and characterization of new ferrocenyl-containing tin(IV) and indium(III) porphyrins, Master’s Thesis, 2011. http://hdl.handle.net/11299/113858
  • M. Moghadam, S. Tangestaninejad, V. Mirkhani, I. Mohammadpoor-Baltork, and S.A. Taghavi, High-valent tin(IV) porphyrin, Sn(IV) (TPP)(BF4)2, as an efficient catalyst for the ring-opening of epoxides, Catal. Commun. 8 (2007), pp. 2087‒2095. doi:10.1016/j.catcom.2007.04.013
  • V.S. Shetti and M. Ravikanth, A simple alternative method for preparing Sn(IV) porphyrins, J. Porphyrins Phthalocyanines 14 (2010), pp. 361‒370. doi:10.1142/S1088424610002124
  • S.W. Lai, Y.J. Hou, C.M. Che, H.L. Pang, K.Y. Wong, C.K. Chang, and N. Zhu, Electronic spectroscopy, photophysical properties, and emission quenching studies of an oxidatively robust perfluorinated platinum porphyrin, Inorg. Chem. 43 (2004), pp. 3724‒3732. doi:10.1021/ic049902h
  • J. Zhang, P. Zhang, Z. Zhang, and X. Wei, Spectroscopic and kinetic studies of photochemical reaction of magnesium tetraphenylporphyrin with oxygen, J. Phys. Chem. A 113 (2009), pp. 5367‒5374. doi:10.1021/jp811209k
  • K. Ezzayani, A.B. Khelifa, E. Saint-Aman, F. Loiseau, and H. Nasri, Complex of hexamethylenetetramine with magnesium-tetraphenylporphyrin: Synthesis, structure, spectroscopic characterizations and electrochemical properties, J. Mol. Struct. 1137 (2017), pp. 412‒418. doi:10.1016/j.molstruc.2017.02.054
  • L. Edwards, D. Dolphin, M. Gouterman, and A.D. Adler, Porphyrins XVII. Vapor absorption spectra and redox reactions: Tetraphenylporphins and porphin, J. Mol. Spectrosc. 38 (1971), pp. 16‒32. doi:10.1016/0022-2852(71)90090-7
  • J.T. Groves and T.E. Nemo, Aliphatic hydroxylation catalyzed by iron porphyrin complexes, J. Am. Chem. Soc. 105 (1983), pp. 6243‒6248. doi:10.1021/ja00358a009
  • M. Malaisong, Synthesis and characterization of long chained alkane porphyrins and their derivatives for alcohol sensor and antibacterial properties application, Master’s Thesis, Thammasat University, 2016.
  • S. Drouet, C.O. Paul-Roth, V. Fattori, M. Cocchi, and J.A.G. wiliams, Platinum and palladium complexes of fluorenyl porphyrins as red phosphors for light-emitting devices, New J. Chem. 35 (2011), pp. 438‒444. doi:10.1039/C0NJ00561D
  • N. Venkatramaiah, N. Veeraiah, and R. Venkatesan, Environment effect on the optical and photophysical investigation of Al(III) porphyrins doped hybrid borate glasses, Mater. Chem. Phys. 130 (2011), pp. 134‒139. doi:10.1016/j.matchemphys.2011.06.012
  • M.H. Keshavarz and A.R. Akbarzadeh, A simple approach for assessment of toxicity of nitroaromatic compounds without using complex descriptors and computer codes, SAR QSAR Environ. Res. 30 (2019), pp. 347‒361. doi:10.1080/1062936X.2019.1595135
  • V. Consonni, D. Ballabio, and R. Todeschini, Comments on the definition of the Q2 parameter for QSAR validation, J. Chem. Inf. Model. 49 (2009), pp. 1669‒1678. doi:10.1021/ci900115y
  • W.J. Palm, Introduction to MATLAB 7 for Engineers, McGraw-Hill, New York, 2005.
  • B.L. Auras, S. De Lucca Meller, M.P. Da Silva, A. Neves, L.H.Z. Cocca, L. De Boni, C.H. da Silveira, and B.A. Iglesias, Synthesis, spectroscopic/electrochemical characterization and DNA interaction study of novel ferrocenyl‐substituted porphyrins, Appl. Organomet. Chem. 32 (2018), pp. 4318‒4330. doi:10.1002/aoc.4318
  • R.L. Milot, G.F. Moore, R.H. Crabtree, G.W. Brudvig, and C.A. Schmuttenmaer, Electron injection dynamics from photoexcited porphyrin dyes into SnO2 and TiO2 nanoparticles, J. Phys. Chem. C 117 (2013), pp. 21662‒21670. doi:10.1021/jp406734t
  • J. Brahmi, S. Nasri, H. Saidi, H. Nasri, and K. Aouadi, Synthesis of new porphyrin complexes: Evaluations on optical, electrochemical, electronic properties and application as an optical sensor, Chem. Sel. 4 (2019), pp. 1350‒1359. doi:10.1002/slct.201803676
  • M. Sirish and B.G. Maiya, Quenching of fluorescence in a series of covalently linked porphyrin-dinitrobenzene compounds, J. Photochem. Photobiol. A 77 (1994), pp. 189‒200. doi:10.1016/1010-6030(94)80043-X
  • N. Amiri, M. Hajji, T. Roisnel, G. Simonneaux, and H. Nasri, Synthesis, molecular structure, photophysical properties and spectroscopic characterization of new 1D-magnesium(II) porphyrin-based coordination polymer, Res. Chem. Intermed. 44 (2018), pp. 5583‒5595. doi:10.1007/s11164-018-3442-9
  • K. Prakash, V. Sudhakar, M. Sankar, and K. Krishnamoorthy, Trans-A2B2 Zn(II) porphyrin dyes with various donor groups and their Co-sensitization for highly efficient dye-sensitized solar cells, Dyes Pigm. 160 (2019), pp. 386–394. doi:10.1016/j.dyepig.2018.08.029
  • K.X. Tan, H.O. Lintang, S. Maniam, S.J. Langford, and M.B. Bakar, Synthesis and photophysical studies of fluorenone-armed porphyrin arrays, Tetrahedron 72 (2016), pp. 5402‒5413. doi:10.1016/j.tet.2016.07.028
  • P. Yadav, R. Kumar, A. Saxena, R.J. Butcher, and M. Sankar, β‐trisubstituted “push–pull” porphyrins–synthesis and structural, photophysical, and electrochemical redox properties, Eur. J. Inorg. Chem. (2017), pp. 3269‒3274. doi:10.1002/ejic.201700310.
  • N. Chaudhri, L. Cong, N. Grover, W. Shan, K. Anshul, M. Sankar, and K.M. Kadish, Synthesis and electrochemical characterization of acetylacetone (acac) and ethyl acetate (EA) appended β-trisubstituted push–pull porphyrins: Formation of electronically communicating porphyrin dimers, Inorg. Chem. 57 (2018), pp. 13213‒13224. doi:10.1021/acs.inorgchem.8b01690
  • K. Prakash, S. Manchanda, V. Sudhakar, N. Sharma, M. Sankar, and K. Krishnamoorthy, Facile synthesis of β-functionalized “push-pull” Zn(II) porphyrins for DSSC applications, Dyes Pigm. 147 (2017), pp. 56‒66. doi:10.1016/j.dyepig.2017.07.053
  • P. Lang, M. Pfrunder, G. Quach, B. Braun‐Cula, E.G. Moore, and M. Schwalbe, Sensitized photochemical CO2 reduction by hetero‐pacman compounds linking a reI tricarbonyl with a porphyrin unit, Chem. Eur. J. 25 (2019), pp. 4509‒4519. doi:10.1002/chem.201806347
  • D. Yao, X. Zhang, S. Abid, L. Shi, M. Blanchard-Desce, O. Mongin, F. Paul, and C.O. Paul-Roth, New porphyrin-based dendrimers with alkene linked fluorenyl antennae for optics, New J. Chem. 42 (2018), pp. 395‒401. doi:10.1039/c7nj03522e
  • T. Biellmann, A. Galanti, J. Boixel, J.A. Wytko, V. Guerchais, P. Samorì, and J. Weiss, Fluorescence commutation and surface photopatterning with porphyrin tetradithienylethene switches, Chem. Eur. J. 24 (2018), pp. 1631‒1639. doi:10.1002/chem.201704222
  • A.K. Mandal, M. Taniguchi, J.R. Diers, D.M. Niedzwiedzki, C. Kirmaier, J.S. Lindsey, D.F. Bocian, and D. Holten, Photophysical properties and electronic structure of porphyrins bearing zero to four meso-phenyl substituents: New insights into seemingly well understood tetrapyrroles, J. Phys. Chem A. 120 (2016), pp. 9719‒9731. doi:10.1021/acs.jpca.6b09483
  • G. Santosh and M. Ravikanth, Synthesis and spectral properties of N4, N3S, and N2S2 porphyrins containing one, two, three, and four meso-furyl groups, Tetrahedron 63 (2007), pp. 7833‒7844. doi:10.1016/j.tet.2007.05.099
  • A. Moiseev, E. Margulies, J. Schneider, F. Bélanger-Gariépyb, and D.F. Perepichka, Protecting the triplet excited state in sterically congested platinum porphyrin, Dalton Trans. 43 (2014), pp. 2676‒2683. doi:10.1039/C3DT52926F
  • N. Gupta, C. Sharma, M. Kumar, and R. Kumar, Synthesis and comparative charge transfer studies in porphyrin–fullerene dyads: Mode of attachment effect, New J. Chem. 41 (2017), pp. 13276‒13286. doi:10.1039/C7NJ01613A
  • F.R. Kooriyaden, S. Sujatha, and C. Arunkumar, Study of scrambling in porphyrin forming reactions: Synthesis, structure, photophysical, electrochemical and antimicrobial studies, Polyhedron 128 (2017), pp. 85‒94. doi:10.1016/j.poly.2017.03.002
  • M. Pineiro, A.L. Carvalho, M.M. Pereira, A.M.D.R. Gonsalves, L.G.A.M.M. Pereira, M.M. Pereira, and S.J. Formosinho, Photoacoustic measurements of porphyrin triplet‐st +.03231+ate quantum yields and singlet‐oxygen efficiencies, Chem. Eur. J. 4 (1998), pp. 2299‒2307. doi:10.1002/(SICI)1521-3765(19981102)4:11<2299::AID-CHEM2299>3.0.CO;2-H
  • O. Mongin, V. Hugues, M. Blanchard-Desce, A. Merhi, S. Drouet, D. Yao, and C. Paul-Rothab, Fluorenyl porphyrins for combined two-photon excited fluorescence and photosensitization, Chem. Phys. Lett. 625 (2015), pp. 151‒156. doi:10.1016/j.cplett.2015.03.003
  • I. Gupta and M. Ravikanth, Spectroscopic properties of meso-thienylporphyrins with different porphyrin cores, J. Photochem. Photobiol. A 177 (2006), pp. 156‒163. doi:10.1016/j.jphotochem.2005.05.020
  • S. Santra, D. Kumaresan, N. Agarwal, and M. Ravikanth, cis-Pyridyl core-modified porphyrins for the synthesis of cationic water-soluble porphyrins and unsymmetrical non-covalent porphyrin arrays, Tetrahedron 59 (2003), pp. 2353‒2362. doi:10.1016/S0040-4020(03)00183-2
  • C. Farley, A. Aggarwal, S. Singh, A. Dolor, P. To, A. Falber, M. Crossley, and C.M. Drain, A structural model of nitro‐porphyrin dyes based on spectroscopy and density functional theory, J. Comput. Chem. 39 (2018), pp. 1129‒1142. doi:10.1002/jcc.24887
  • J.S. Lindsey and J.N. Woodford, A simple method for preparing magnesium porphyrins, Inorg. Chem. 34 (1995), pp. 1063‒1069. doi:10.1021/ic00109a011
  • S. Phukan, B. Mishra, K.C. Shekar, A. Kumar, D. Kumar, and S. Mitra, Fluorescence spectroscopic studies on substituted porphyrins in homogeneous solvents and cationic micellar medium, J. Lumin. 134 (2013), pp. 232‒239. doi:10.1016/j.jlumin.2012.08.040
  • W. Zheng, N. Shan, L. Yu, and X. Wang, UV–visible, fluorescence and EPR properties of porphyrins and metalloporphyrins, Dyes Pigm. 77 (2008), pp. 153‒157. doi:10.1016/j.dyepig.2007.04.007
  • T. Phromsatit, W. Jantayot, K. Pinsuwan, A. Nuchthanom, and S. Boonyuen, Thermal behavior and the solvent effects of ρ-methoxy tetraphenylporphyrin (TOMPP), Copper Porphyrin (CuTOMPP), and Nitroporphyrin (CuTOMPP-NO2), MATEC Web Conf. EDP Sci. 69 (2016), pp. 1‒5. doi:10.1051/matecconf/20166906002
  • R.K. Bhatt, S. Sharma, and M. Nath, La(OTf)3-catalyzed one-pot synthesis of meso-substituted porphyrinic thiazolidinones, Monatsh. Chem. 143 (2012), pp. 309‒316. doi:10.1007/s00706-011-0625-0
  • L.F.V. Ferreira, D.P. Ferreira, A.S. Oliveira, R. Boscencu, R. Socoteanu, M. Ilie, C. Constantin, and M. Neagu, Synthesis, photophysical and cytotoxicity evaluation of A3B type mesoporphyrinic compounds, Dyes Pigm. 95 (2012), pp. 296‒303. doi:10.1016/j.dyepig.2012.05.012
  • A. Rana and P.K. Panda, Fluorescent turn-off based sensing of nitrated explosives using porphyrins and their Zn(II)-derivatives, RSC Adv. 2 (2012), pp. 12164‒12168. doi:10.1039/C2RA21271D
  • W. Wu, W. Wu, S. Ji, H. Guo, X. Wang, and J. Zhao, The synthesis of 5,10,15,20-tetraarylporphyrins and their platinum(II) complexes as luminescent oxygen sensing materials, Dyes Pigm. 89 (2011), pp. 199‒211. doi:10.1016/j.dyepig.2010.01.020
  • X. He, G. Xia, Y. Zhou, M. Zhang, and T. Shen, Comparative study of photophysical properties of isomeric tetrapyridyl-and tetra-(N-hexadecylpyridiniumyl) porphyrins, Spectrochim. Acta, Part A 55 (1999), pp. 873‒880. doi:10.1016/S1386-1425(98)00237-6
  • M. Makarska-Bialokoz and A. Gladysz-Plaska, Spectroscopic analysis of porphyrin compounds irradiated with visible light in chloroform with addition of β-myrcene, J. Mol. Struct. 1125 (2016), pp. 103‒112. doi:10.1016/j.molstruc.2016.06.065
  • É.M.N. Mhuircheartaigh, W.J. Blau, M. Prato, and S. Giordani, Spectroscopic changes induced by sonication of porphyrin–carbon nanotube composites in chlorinated solvents, Carbon 45 (2007), pp. 2665‒2671. doi:10.1016/j.carbon.2007.07.022
  • H. Yeo, K. Tanaka, and Y. Chujo, Construction and properties of a light-harvesting antenna system for phosphorescent materials based on oligofluorene-tethered Pt–porphyrins, RSC Adv. 7 (2017), pp. 10869‒10874. doi:10.1039/C6RA28735B
  • G. Zuo, Q. Wang, Z. Li, J. Yang, and P. Wang, Preparation and electrocatalytic behavior of CoTPP/RGO nanocomposite for dioxygen reduction, Int. J. Electrochem. Sci. 10 (2015), pp. 6703‒6713.
  • M.H. Keshavarz, F. Gharagheizi, A. Shokrolahi, and S. Zakinejad, Accurate prediction of the toxicity of benzoic acid compounds in mice via oral without using any computer codes, J. Hazard. Mater. 237 (2012), pp. 79‒101. doi:10.1016/j.jhazmat.2012.07.048
  • R. Rahimi, M.H. Keshavarz, and A.R. Akbarzadeh, Prediction of the density of energetic materials on the basis of their molecular structures, Cent. Eur. J. Energetic Mater. 13 (2016), pp. 73‒101.
  • M.H. Keshavarz, A.R. Akbarzadeh, R. Rahimi, M. Jafari, M. Pasandideh, and R. Sadeghi, A reliable method for prediction of enthalpy of fusion in energetic materials using their molecular structures, Fluid Phase Equilib. 427 (2016), pp. 46‒55. doi:10.1016/j.fluid.2016.06.052
  • M.H. Keshavarz, R. Rahimi, and A.R. Akbarzadeh, Two novel correlations for assessment of crystal density of hazardous ionic molecular energetic materials using their molecular structures, Fluid Phase Equilib. 402 (2015), pp. 1‒8. doi:10.1016/j.fluid.2015.05.020
  • M.H. Keshavarz and H.R. Pouretedal, Simple empirical method for prediction of impact sensitivity of selected class of explosives, J. Hazard. Mater. 124 (2005), pp. 27‒33. doi:10.1016/j.jhazmat.2005.05.009
  • J.M. Bland and D.G. Altman, Statistics notes: Measurement error, BMJ 312 (1996), pp. 1654‒1658. doi:10.1136/bmj.312.7047.1654

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.