124
Views
6
CrossRef citations to date
0
Altmetric
Research Article

2D QSAR studies on a series of (4S,5R)-5-[3,5-bis(trifluoromethyl)phenyl]-4-methyl-1,3-oxazolidin-2-one as CETP inhibitors

, &
Pages 423-438 | Received 16 Mar 2020, Accepted 02 May 2020, Published online: 01 Jun 2020

References

  • A. Garcia-Rios, J.F. Alcala-Diaz, F. Gomez-Delgado, J. Delgado-Lista, C. Marin, A. Leon-Acuña, A. Camargo, F. Rodriguez-Cantalejo, R. Blanco-Rojo, and G. Quintana-Navarro, Beneficial effect of CETP gene polymorphism in combination with a mediterranean diet influencing lipid metabolism in metabolic syndrome patients: CORDIOPREV study, Clin. Nutr. 37 (2018), pp. 229–234. doi:10.1016/j.clnu.2016.12.011.
  • G.J. de Grooth, A.H. Klerkx, E.S. Stroes, A.F. Stalenhoef, J.J. Kastelein, and J.A. Kuivenhoven, A review of CETP and its relation to atherosclerosis, J. Lipid Res. 45 (2004), pp. 1967–1974. doi:10.1194/jlr.R400007-JLR200.
  • P. Linsel-Nitschke and A.R. Tall, HDL as a target in the treatment of atherosclerotic cardiovascular disease, Nat. Rev. Drug Discov. 4 (2005), pp. 193–205. doi:10.1038/nrd1658.
  • C. Baigent, A. Keech, P. Kearney, R. Collins, and J. Simes, Efficacy and safety of cholesterol-lowering treatment–Authors’ reply, Lancet 367 (2006), pp. 470–471. doi:10.1016/S0140-6736(06)68171-3.
  • M. Law and N.J. Wald, Efficacy and safety of cholesterol-lowering treatment, Lancet 367 (2006), pp. 469–470. doi:10.1016/S0140-6736(06)68170-1.
  • B.G. Brown, K.H. Stukovsky, and X.-Q. Zhao, Simultaneous low-density lipoprotein-C lowering and high-density lipoprotein-C elevation for optimum cardiovascular disease prevention with various drug classes, and their combinations: A meta-analysis of 23 randomized lipid trials, Curr. Opin. Lipidol. 17 (2006), pp. 631–636. doi:10.1097/MOL.0b013e32800ff750.
  • I.M. Singh, M.H. Shishehbor, and B.J. Ansell, High-density lipoprotein as a therapeutic target: A systematic review, Jama 298 (2007), pp. 786–798. doi:10.1001/jama.298.7.786.
  • R.S. Barkowski and W.H. Frishman, HDL metabolism and CETP inhibition, Cardiol. Rev. 16 (2008), pp. 154–162. doi:10.1097/CRD.0b013e31816a3b60.
  • R. Dullaart, G. Dallinga‐Thie, B. Wolffenbuttel, and A. Van Tol, CETP inhibition in cardiovascular risk management: A critical appraisal, Eur. J. Clin. Invest. 37 (2007), pp. 90–98. doi:10.1111/j.1365-2362.2007.01756.x.
  • A.H. Klerkx, K.E. Harchaoui, W.A. van der Steeg, S.M. Boekholdt, E.S. Stroes, J.J. Kastelein, and J.A. Kuivenhoven, Cholesteryl ester transfer protein (CETP) inhibition beyond raising high-density lipoprotein cholesterol levels: Pathways by which modulation of CETP activity may alter atherogenesis, Arterioscler. Thromb. Vasc. Biol. 26 (2006), pp. 706–715. doi:10.1161/01.ATV.0000205595.19612.c9.
  • P.J. Barter, M. Caulfield, M. Eriksson, S.M. Grundy, J.J. Kastelein, M. Komajda, J. Lopez-Sendon, L. Mosca, J.-C. Tardif, and D.D. Waters, Effects of torcetrapib in patients at high risk for coronary events, N. Engl. J. Med. 357 (2007), pp. 2109–2122. doi:10.1056/NEJMoa0706628.
  • S.E. Nissen, J.-C. Tardif, S.J. Nicholls, J.H. Revkin, C.L. Shear, W.T. Duggan, W. Ruzyllo, W.B. Bachinsky, G.P. Lasala, and E.M. Tuzcu, Effect of torcetrapib on the progression of coronary atherosclerosis, N. Engl. J. Med. 356 (2007), pp. 1304–1316. doi:10.1056/NEJMoa070635.
  • A. Ali, Z. Lu, P.J. Sinclair, G.E. Taylor, C.F. Thompson, C.J. Smith, A.A. Dowst, and Y.-H. Chen, CETP Inhibitors, U.S. Patent No. 7,781,426. Washington, DC: U.S. Patent and Trademark Office, 2010.
  • C.P. Cannon, H.M. Dansky, M. Davidson, A.M. Gotto Jr, E.A. Brinton, A.L. Gould, M. Stepanavage, S.X. Liu, S. Shah, and J. Rubino, Design of the define trial: Determining the efficacy and tolerability of CETP inhibition with anacetrapib, Am. Heart J. 158 (2009), pp. 513–519. e3. doi:10.1016/j.ahj.2009.07.028.
  • C.P. Cannon, S. Shah, H.M. Dansky, M. Davidson, E.A. Brinton, A.M. Gotto Jr, M. Stepanavage, S.X. Liu, P. Gibbons, and T.B. Ashraf, Safety of anacetrapib in patients with or at high risk for coronary heart disease, N. Engl. J. Med. 363 (2010), pp. 2406–2415. doi:10.1056/NEJMoa1009744.
  • D. Gutstein, R. Krishna, D. Johns, H. Surks, H. Dansky, S. Shah, Y. Mitchel, J. Arena, and J. Wagner, Anacetrapib, a novel CETP inhibitor: Pursuing a new approach to cardiovascular risk reduction, Clin. Pharmacol. Ther. 91 (2012), pp. 109–122. doi:10.1038/clpt.2011.271.
  • M.A. Kelkar, D.V. Pednekar, S.R. Pimple, and K.G. Akamanchi, 3D QSAR studies of inhibitors of cholesterol ester transfer protein (CETP) by CoMFA, CoMSIA and GFA methodologies, Med. Chem. Res. 13 (2004), pp. 590–604. doi:10.1007/s00044-004-0104-9.
  • P. Hanumantharao, S. Sambasivarao, L. Soni, A. Gupta, and S. Kaskhedikar, QSAR analysis of analogs of bis [2-(acylamino) phenyl] disulfides, 2-(acylamino) benzenethiols and S-[2-(acylamino) phenyl] alkanethioates as antihyperlipidemic agents, Indian J. Chem. B 44 (2005), pp. 1481–1486.
  • M.S. Castilho, R.V. Guido, and A.D. Andricopulo, 2D quantitative structure–activity relationship studies on a series of cholesteryl ester transfer protein inhibitors, Bioorg. Med. Chem. 15 (2007), pp. 6242–6252. doi:10.1016/j.bmc.2007.06.021.
  • S. Riahi, E. Pourbasheer, M.R. Ganjali, and P. Norouzi, Support vector machine‐based quantitative structure–activity relationship study of cholesteryl ester transfer protein inhibitors, Chem. Biol. Drug Des. 73 (2009), pp. 558–571. doi:10.1111/j.1747-0285.2009.00800.x.
  • M. Asadollahi-Baboli, Docking and receptor-based QSAR approaches for modeling of CETP inhibitors, Med. Chem. Res. 23 (2014), pp. 1162–1169. doi:10.1007/s00044-013-0722-1.
  • R. Abu Khalaf, S. Al-Rawashdeh, D. Sabbah, and G. Abu Sheikha, Molecular docking and pharmacophore modeling studies of fluorinated benzamides as potential CETP inhibitors, Med. Chem. 13 (2017), pp. 239–253. doi:10.2174/1573406412666161104121042.
  • T. Äijänen, A. Koivuniemi, M. Javanainen, S. Rissanen, T. Rog, and I. Vattulainen. How anacetrapib inhibits the activity of the cholesteryl ester transfer protein? Perspective through atomistic simulations. PLoS Comput. Biol. 10 (2014), e1003987. doi:10.1371/journal.pcbi.1003987
  • M. Jamalan, M. Zeinali, and M.A. Ghaffari, A molecular dynamics investigation on the inhibition mechanism of cholesteryl ester transfer protein by anacetrapib, Med. Chem. Res. 25 (2016), pp. 62–69. doi:10.1007/s00044-015-1471-0.
  • OECD. Guidance document on the validation of (quantitative) structure-activity relationship [(Q)SAR] models. Organisation for Economic Co-operation and Development, Paris, France, 2007.
  • X. Chen, M. Liu, and M.K. Gilson, BindingDB: A web-accessible molecular recognition database, Comb. Chem. High Throughput Screen. 4 (2001), pp. 719–725. doi:10.2174/1386207013330670.
  • P. Labute, Molecular Operating Environment. Chemical Computing Group, Inc., Canada, Montreal, 2008.
  • C.W. Yap, PaDEL‐descriptor: An open source software to calculate molecular descriptors and fingerprints, J. Comput. Chem. 32 (2011), pp. 1466–1474. doi:10.1002/jcc.21707.
  • S. Bitam, M. Hamadache, and S. Hanini, QSAR model for prediction of the therapeutic potency of N-benzylpiperidine derivatives as AChE inhibitors, SAR QSAR Environ. Res 28 (2017), pp. 471–489. doi:10.1080/1062936X.2017.1331467.
  • M. Hamadache, S. Hanini, O. Benkortbi, A. Amrane, L. Khaouane, and C.S. Moussa, Artificial neural network-based equation to predict the toxicity of herbicides on rats, Chemom. Intell. Lab. Syst. 154 (2016), pp. 7–15. doi:10.1016/j.chemolab.2016.03.007.
  • D.B. De Oliveira and A.C. Gaudio, BuildQSAR: A new computer program for QSAR analysis, Quant. Struct. Act. Relat. 19 (2000), pp. 599–601. doi:10.1002/1521-3838(200012)19:6<599::AID-QSAR599>3.0.CO;2-B.
  • C. Yap, H. Li, Z. Ji, and Y. Chen, Regression methods for developing QSAR and QSPR models to predict compounds of specific pharmacodynamic, pharmacokinetic and toxicological properties, Mini-Rev. Med. Chem. 7 (2007), pp. 1097–1107. doi:10.2174/138955707782331696.
  • G. Snedecor and W. Cochran, Statistical Methods 6th Edition, The Iowa State University Press, Ames, 1967.
  • C.J.C. Burges, A tutorial on support vector machines for pattern recognition, Data Mining Knowledge Discov. 10 (2014), pp. 121–167. doi:10.1023/A:1009715923555.
  • V. Vapnik, Estimation of Dependences Based on Empirical Data, Springer Science & Business Media, New York, 2006.
  • J.C. Boot, Quadratic Programming: Algorithms, Anomalies, Applications, in Studies in Mathematical and Managerial Economics, Vol. 2. North Holland Publishing Company, Amsterdam, 1964.
  • B.E. Boser, I.M. Guyon, and V.N. Vapnik, A training algorithm for optimal margin classifiers, Proceedings of the Fifth Annual Workshop on Computational Learning Theory - COLT ’92, Pittsburgh Pennsylvania, USA, 1992.
  • V. Vapnik, The Nature of Statistical Learning Theory, Springer Science & Business Media, New York, 2013.
  • R. Mendes, P. Cortez, M. Rocha, and J. Neves, Particle swarms for feedforward neural network training, Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN’02, (Cat. No. 02CH37290), Honolulu, HI, USA, 2002, pp. 1895–1899 vol. 2, doi:10.1109/IJCNN.2002.1007808. 2002.
  • S. Mirjalili, Evolutionary Feedforward Neural Networks, in Evolutionary Algorithms and Neural Networks, Springer, New York, 2019, pp. 75–86.
  • J. Kennedy and R. Eberhart, Particle Swarm optimization, International Conference on Neural Networks, Perth, WA, Australia, 1995, pp. 1942–1948 vol. 4, doi:10.1109/ICNN.1995.488968. 1995.
  • R. Eberhart and J. Kennedy, A new optimizer using particle swarm theory, MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 1995, pp. 39–43, doi:10.1109/MHS.1995.494215. 1995.
  • R. Eberhart, P. Simpson, and R. Dobbins, Computational Intelligence PC Tools, Academic Press Professional, Inc., Boston, 1996.
  • M. Meer, M. Schmuker, and G. Schneider, Optimized particle swarm optimization (OPSO) and its application to artificial neural network training, BMC Bioinform. 7 (2006), pp. 125. doi:10.1186/1471-2105-7-125.
  • C. Zhang, H. Shao, and Y. Li, Particle swarm optimisation for evolving artificial neural network. SMC 2000 Conference Proceedings. 2000 IEEE International Conference on Systems, Man and Cybernetics. Cybernetics Evolving to Systems, Humans, Organizations, and Their Complex Interactions, Cat. no. 0, Nashville, TN, 2000, pp. 2487–2490 vol. 4, doi:10.1109/ICSMC.2000.884366. 2000.
  • S. Mirjalili, S.Z.M. Hashim, and H.M. Sardroudi, Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm, Appl. Math Comput. 218 (2012), pp. 11125–11137.
  • M.N. Alam, B. Das, and V. Pant, A comparative study of metaheuristic optimization approaches for directional overcurrent relays coordination, Electr. Pow. Syst. Res. 128 (2015), pp. 39–52. doi:10.1016/j.epsr.2015.06.018.
  • Q. Bai, Analysis of particle swarm optimization algorithm, Comput. Inf. Sci. 3 (2010), pp. 180.
  • Y. Shi and R. Eberhart, A modified particle swarm optimizer. 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence, (Cat. No. 98TH8360), Anchorage, AK, USA, 1998, pp. 69–73, doi:10.1109/ICEC.1998.699146. 1998.
  • J. Kennedy, The particle swarm: Social adaptation of knowledge, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC ’97), Indianapolis, IN, USA, 1997, pp. 303–308, doi:10.1109/ICEC.1997.592326.
  • M.N. Alam, Codes in Matlab for Particle Swarm Optimization, Research Gate Indian, Institute of Technology Roorkee, 2016. doi:10.13140/RG.2.1.1078.7608.
  • M. Alam, Codes in MATLAB for training artificial neural network using particle swarm optimization, Research Gate (2016), pp. 1–16. doi:10.13140/RG.2.1.2579.3524.
  • P.K. Ojha, I. Mitra, R.N. Das, and K. Roy, Further exploring r m 2 metrics for validation of QSPR models, Chemom. Intell. Lab. Syst. 107 (2011), pp. 194–205. doi:10.1016/j.chemolab.2011.03.011.
  • G. Schüürmann, R.-U. Ebert, J. Chen, B. Wang, and R. Kühne, External validation and prediction employing the predictive squared correlation coefficient. Test set activity mean vs training set activity mean, J. Chem. Inf. Model. 48 (2008), pp. 2140–2145. doi:10.1021/ci800253u.
  • I. Lawrence and K. Lin, A concordance correlation coefficient to evaluate reproducibility, Biometrics 45 (1989), pp. 255–268.
  • N. Chirico and P. Gramatica, Real external predictivity of QSAR models: How to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient, J. Chem. Inf. Model. 51 (2011), pp. 2320–2335. doi:10.1021/ci200211n.
  • S. Bitam, M. Hamadache, and S. Hanini, Prediction of therapeutic potency of tacrine derivatives as BuChE inhibitors from quantitative structure–activity relationship modelling, SAR QSAR Environ. Res. 29 (2018), pp. 213–230. doi:10.1080/1062936X.2018.1423640.
  • K. Roy, P. Ambure, and R.B. Aher, How important is to detect systematic error in predictions and understand statistical applicability domain of QSAR models? Chemom. Intell. Lab. Syst. 162 (2017), pp. 44–54. doi:10.1016/j.chemolab.2017.01.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.