251
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Identification of structural fingerprints for ABCG2 inhibition by using Monte Carlo optimization, Bayesian classification, and structural and physicochemical interpretation (SPCI) analysis

, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 439-455 | Received 13 Mar 2020, Accepted 17 May 2020, Published online: 15 Jun 2020

References

  • E. Roussel, V.K. Tran-Nguyen, K. Bouhedjar, M.A. Dems, A. Belaidi, B. Matougui, B. Peres, A. Azioune, O. Renaudet, P. Falson, and A. Boumendjel, Optimization of the chromone scaffold through QSAR and docking studies: Identification of potent inhibitors of ABCG2, Eur. J. Med. Chem. 184 (2019), pp. 111772. doi:10.1016/j.ejmech.2019.111772.
  • W. Mo and J.T. Zhang, Human ABCG2: Structure, function, and its role in multidrug resistance, Int. J. Biochem. Cell B 3 (2012), pp. 1.
  • W.J. Li, X.H. Chen, J.C. Zeng, L.L. Duan, Z.H. Liu, and X.H. Sheng, Theoretical insight into the multiple interactions of quinazoline inhibitors with breast cancer resistance protein (BCRP/ABCG2), J. Biomol. Struct. Dyn. (2019), pp. 1–8.
  • R.W. Robey, K.K. To, O. Polgar, M. Dohse, P. Fetsch, M. Dean, and S.E. Bates, ABCG2: A perspective, Adv. Drug Deliv. Rev. 61 (2009), pp. 3–13. doi:10.1016/j.addr.2008.11.003.
  • M.J. Szafraniec, M. Szczygieł, K. Urbanska, and L. Fiedor, Determinants of the activity and substrate recognition of breast cancer resistance protein (ABCG2), Drug Metab. Rev. 46 (2014), pp. 459–474. doi:10.3109/03602532.2014.942037.
  • M.H. Hasanabady and F. Kalalinia, ABCG2 inhibition as a therapeutic approach for overcoming multidrug resistance in cancer, J. Biosci. 41 (2016), pp. 313–324. doi:10.1007/s12038-016-9601-5.
  • O. Polgar, R.W. Robey, and S.E. Bates, ABCG2: Structure, function and role in drug response, Expert Opin. Drug Metab. Toxicol. 4 (2008), pp. 1–5. doi:10.1517/17425255.4.1.1.
  • J. Gallus, K. Juvale, and M. Wiese, Characterization of 3-methoxy flavones for their interaction with ABCG2 as suggested by ATPase activity, Biochim. Biophys. Acta 1838 (2014), pp. 2929–2938. doi:10.1016/j.bbamem.2014.08.003.
  • R.J. Ferreira, C.A. Bonito, M.N. Cordeiro, M.J. Ferreira, and D.J. Dos Santos, Structure-function relationships in ABCG2: Insights from molecular dynamics simulations and molecular docking studies, Sci. Rep. 8 (2018), pp. 1–7. doi:10.1038/s41598-018-24602-w.
  • P. Pavek, G. Merino, E. Wagenaar, E. Bolscher, M. Novotna, J.W. Jonker, and A.H. Schinkel, Human breast cancer resistance protein: Interactions with steroid drugs, hormones, the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo (4, 5-b) pyridine, and transport of cimetidine, J. Pharmacol. Exp. Ther. 312 (2005), pp. 144–152. doi:10.1124/jpet.104.073916.
  • M.F. Rosenberg, Z. Bikadi, E. Hazai, T. Starborg, L. Kelley, N.E. Chayen, R.C. Ford, and Q. Mao, Three-dimensional structure of the human breast cancer resistance protein (BCRP/ABCG2) in an inward-facing conformation, Acta Crystallogr. D Biol. Crystallogr. 71 (2015), pp. 1725–1735. doi:10.1107/S1399004715010676.
  • M. Videira, R.L. Reis, and M.A. Brito, Deconstructing breast cancer cell biology and the mechanisms of multidrug resistance, Biochim. Biophys. Acta 1846 (2014), pp. 312–325. doi:10.1016/j.bbcan.2014.07.011.
  • B. Bhardwaj, A.T. Baidya, S.A. Amin, N. Adhikari, T. Jha, and S. Gayen, Insight into structural features of phenyltetrazole derivatives as ABCG2 inhibitors for the treatment of multidrug resistance in cancer, SAR QSAR Environ. Res. 30 (2019), pp. 457–475. doi:10.1080/1062936X.2019.1615545.
  • C.W. Murray, M.L. Verdonk, and D.C. Rees, Experiences in fragment-based drug discovery, Trends Pharmacol. Sci. 33 (2012), pp. 224–232. doi:10.1016/j.tips.2012.02.006.
  • S. Jain, S.A. Amin, N. Adhikari, T. Jha, and S. Gayen, Good and bad molecular fingerprints for human rhinovirus 3C protease inhibition: Identification, validation, and application in designing of new inhibitors through Monte Carlo-based QSAR study, J. Biomol. Struct. Dyn. 38 (2019), pp. 66–77. doi:10.1080/07391102.2019.1566093.
  • S.A. Amin, N. Adhikari, S. Bhargava, T. Jha, and S. Gayen, Structural exploration of hydroxyethylamines as HIV-1 protease inhibitors: New features identified, SAR QSAR Environ. Res. 29 (2018), pp. 385–408. doi:10.1080/1062936X.2018.1447511.
  • R. Gaikwad, S. Ghorai, S.A. Amin, N. Adhikari, T. Patel, K. Das, T. Jha, and S. Gayen, Monte Carlo based modelling approach for designing and predicting cytotoxicity of 2-phenylindole derivatives against breast cancer cell line MCF7, Toxicol. In Vitro 52 (2018), pp. 23–32. doi:10.1016/j.tiv.2018.05.016.
  • J.E. Obreque-Balboa, Q. Sun, G. Bernhardt, B. König, and A. Buschauer, Flavonoid derivatives as selective ABCC1 modulators: Synthesis and functional characterization, Eur. J. Med. Chem. 109 (2016), pp. 124–133. doi:10.1016/j.ejmech.2015.12.010.
  • O. Szolomajer-Csikos, E. Beery, L. Kosa, Z. Rajnai, M. Jani, A. Hetenyi, K. TauberJakab, P. Krajcsi, and G.K. Toth, Synthesis and ABCG2 inhibitory activity of novel fumitremorgin C analogs–specificity and structure activity correlations, Med. Chem. 9 (2013), pp. 494–509. doi:10.2174/1573406411309040003.
  • S.C. Koehler, K. Silbermann, and M. Wiese, Phenyltetrazolyl-phenylamides: Substituent impact on modulation capability and selectivity toward the efflux protein ABCG2 and investigation of interaction with the transporter, Eur. J. Med. 124 (2016), pp. 881–895. doi:10.1016/j.ejmech.2016.09.010.
  • F. Marighetti, K. Steggemann, M. Karbaum, and M. Wiese, Scaffold identification of a new class of potent and selective BCRP inhibitors, ChemMedChem 10 (2015), pp. 742–751. doi:10.1002/cmdc.201402498.
  • S. Kraege, S.C. Kohler, and M. Wiese, Acryloylphenylcarboxamides: A new class of breast cancer resistance protein (ABCG2) modulators, ChemMedChem 11 (2016), pp. 2422–2435. doi:10.1002/cmdc.201600341.
  • S. Kraege, K. Stefan, S.C. Kohler, and M. Wiese, Optimization of acryloylphenylcarboxamides as inhibitors of ABCG2 and comparison with acryloylphenylcarboxylate, ChemMedChem 11 (2016), pp. 2547–2558. doi:10.1002/cmdc.201600455.
  • S.C. Koehler, S. Vahdati, M.S. Scholz, and M. Wiese, Structure activity relationships, multidrug resistance reversal and selectivity of heteroarylphenyl ABCG2 inhibitors, Eur. J. Med. Chem. 146 (2018), pp. 483–500. doi:10.1016/j.ejmech.2018.01.012.
  • A. Spindler, K. Stefan, and M. Wiese, Synthesis and investigation of tetrahydro-β-carboline derivatives as inhibitors of the breast cancer resistance protein (ABCG2), J. Med. Chem. 59 (2016), pp. 6121–6135. doi:10.1021/acs.jmedchem.6b00035.
  • M.K. Krapf and M. Wiese, Synthesis and biological evaluation of 4-anilino-quinazolines and-quinolines as inhibitors of breast cancer resistance protein (ABCG2), J. Med. Chem. 59 (2016), pp. 5449–5461. doi:10.1021/acs.jmedchem.6b00330.
  • K. Juvale, V.F. Pape, and M. Wiese, Investigation of chalcones and benzochalcones as inhibitors of breast cancer resistance protein, Bioorg. Med. Chem. 20 (2012), pp. 346–355. doi:10.1016/j.bmc.2011.10.074.
  • K. Juvale, J. Gallus, and M. Wiese, Investigation of quinazolines as inhibitors of breast cancer resistance protein (ABCG2), Bioorg. Med. Chem. 21 (2013), pp. 7858–7873. doi:10.1016/j.bmc.2013.10.007.
  • M.K. Krapf, J. Gallus, and M. Wiese, 4-Anilino-2-pyridylquinazolines and-pyrimidines as highly potent and nontoxic inhibitors of breast cancer resistance protein (ABCG2), J. Med. Chem. 60 (2017), pp. 4474–4495. doi:10.1021/acs.jmedchem.7b00441.
  • A.A. Toropov, A.P. Toropova, A. Lombardo, A. Roncaglioni, E. Benfenati, and G. Gini, CORAL: Building up the model for bioconcentration factor and defining it’s applicability domain, Eur. J. Med. Chem. 46 (2011), pp. 1400–1403. doi:10.1016/j.ejmech.2011.01.018.
  • N.M. O’Boyle, M. Banck, C.A. James, C. Morley, T. Vandermeersch, and G.R. Hutchison, Open Babel: An open chemical toolbox, J. Cheminf. 3 (2011), pp. 33. doi:10.1186/1758-2946-3-33.
  • J. Garcia, P.R. Duchowicz, M.F. Rozas, J.A. Caram, M.V. Mirifico, F.M. Fernandez, and E.A. Castro, A comparative QSAR on 1, 2, 5-thiadiazolidin-3-one 1, 1-dioxide compounds as selective inhibitors of human serine proteinases, J. Mol. Graph. Model. 31 (2011), pp. 9–10. doi:10.1016/j.jmgm.2011.07.007.
  • A. Worachartcheewan, P. Mandi, V. Prachayasittikul, A.P. Toropova, A.A. Toropov, and C. Nantasenamat, Large-scale QSAR study of aromatase inhibitors using SMILES-based descriptors, Chemom. Intell. Lab. Syst. 138 (2014), pp. 120–126. doi:10.1016/j.chemolab.2014.07.017.
  • A.T. Baidya, K. Ghosh, S.A. Amin, N. Adhikari, J. Nirmal, T. Jha, and S. Gayen, In silico modelling, identification of crucial molecular fingerprints, and prediction of new possible substrates of human organic cationic transporters 1 and 2, New J. Chem. 44 (2020), pp. 4129–4143. doi:10.1039/C9NJ05825G.
  • S.C. Manisha, P. Kumar, and A. Kumar, Development of prediction model for fructose-1,6-bisphosphatase inhibitors using the Monte Carlo method, SAR QSAR Environ. Res. 30 (2019), pp. 145–159. doi:10.1080/1062936X.2019.1568299.
  • A.A. Toropov, A.P. Toropova, G. Selvestrel, and E. Benfenati, Idealization of correlations between optimal simplified molecular input-line entry system-based descriptors and skin sensitization, SAR QSAR Environ. Res. 30 (2019), pp. 447–455. doi:10.1080/1062936X.2019.1615547.
  • P. Kumar, A. Kumar, and J. Sindhu, Design and development of novel focal adhesion kinase (FAK) inhibitors using Monte Carlo method with index of ideality of correlation to validate QSAR, SAR QSAR Environ. Res. 30 (2019), pp. 63–80. doi:10.1080/1062936X.2018.1564067.
  • L.L. Liu, J. Lu, Y. Lu, M.Y. Zheng, X.M. Luo, W.L. Zhu, H.L. Jiang, and K.X. Chen, Novel Bayesian classification models for predicting compounds blocking hERG potassium channels, Acta Pharmacol. Sin. 35 (2014), pp. 1093. doi:10.1038/aps.2014.35.
  • H. Zhang, Y.L. Kang, Y.Y. Zhu, K.X. Zhao, J.Y. Liang, L. Ding, T.G. Zhang, and J. Zhang, Novel naïve Bayes classification models for predicting the chemical Ames mutagenicity, Toxicol. In Vitro 41 (2017), pp. 56–63. doi:10.1016/j.tiv.2017.02.016.
  • J. Fang, X. Pang, R. Yan, W. Lian, C. Li, Q. Wang, A.L. Liu, and G.H. Du, Discovery of neuroprotective compounds by machine learning approaches, RSC Adv. 6 (2016), pp. 9857–9871. doi:10.1039/C5RA23035G.
  • W. Lian, J. Fang, C. Li, X. Pang, A.L. Liu, and G.H. Du, Discovery of Influenza A virus neuraminidase inhibitors using support vector machine and Naïve Bayesian models, Mol. Divers. 20 (2016), pp. 439–451. doi:10.1007/s11030-015-9641-z.
  • S. Ekins, A.C. Casey, D. Roberts, T. Parish, and B.A. Bunin, Bayesian models for screening and TB Mobile for target inference with Mycobacterium tuberculosis, Tuberculosis 94 (2014), pp. 162–169. doi:10.1016/j.tube.2013.12.001.
  • S.A. Amin, N. Adhikari, S. Bhargava, T. Jha, and S. Gayen, Designing potential antitrypanosomal thiazol-2-ethylamines through predictive regression based and classification based QSAR analyses, Curr. Drug Discov. Technol. 14 (2017), pp. 39–52. doi:10.2174/1570163813666161117144137.
  • S.A. Amin, N. Adhikari, and T. Jha, Diverse classes of HDAC8 inhibitors: In search of molecular fingerprints that regulate activity, Future Med. Chem. 10 (2018), pp. 1589–1602. doi:10.4155/fmc-2018-0005.
  • P. Polishchuk, O. Tinkov, T. Khristova, L. Ognichenko, A. Kosinskaya, A. Varnek, and V. Kuz’min, Structural and physico-chemical interpretation (SPCI) of QSAR models and its comparison with matched molecular pair analysis, J. Chem. Inf. Model. 56 (2016), pp. 1455–1469. doi:10.1021/acs.jcim.6b00371.
  • P.G. Polishchuk, Simplex representation of molecular structure – A chemoinformatic tool for calculation of simplex descriptors v. 1.1.1. Available at https://github.com/DrrDom/sirms. https://github.com/DrrDom/sirms.
  • M. Matveieva, M.T. Cronin, and P. Polishchuk, Interpretation of QSAR models: Mining structural patterns taking into account molecular context, Mol. Inform. 38 (2019), pp. 1800084. doi:10.1002/minf.201800084.
  • RDKit, Open-Source Cheminformatics 2017.09.1. Available at http://www.rdkit.org.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.