376
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Effect of the structural factors of organic compounds on the acute toxicity toward Daphnia magna

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &
Pages 615-641 | Received 14 May 2020, Accepted 30 Jun 2020, Published online: 27 Jul 2020

References

  • R.P. Schwarzenbach, B.I. Escher, K. Fenner, T.B. Hofstetter, C.A. Johnson, U. von Gunten, and B. Wehrli, The challenge of micropollutants in aquatic systems, Science 313 (2006), pp. 1072–1077. doi:10.1126/science.1127291
  • S.M. Rappaport and M.T. Smith, Epidemiology. Environment and disease risks, Science 330 (2010), pp. 460–461. doi:10.1126/science.1192603
  • European Commission, Regulation (EC) no 1907/2006 of the European parliament and of the council of 18 December 2006 concerning the registration, evaluation, authorisation and restriction of chemicals (REACH), establishing a European chemicals agency, amending directive 1999/45/ECC and repealing council regulation (EEC) No 793/93 and commission regulation (EC) No 1488/94 as well as council directive 76/769/EEC and commission directives 91/155/EEC, 93/67/EEC, 93/105/EEC and 2000/21/EC, Off, J. Eur. Union. 50 (2007), pp. 1–281.
  • P.M. Khan, K. Roy, and E. Benfenati, Chemometric modeling of Daphnia magna toxicity of agrochemicals, Chemosphere 224 (2019), pp. 470–479. doi:10.1016/j.chemosphere.2019.02.147
  • A.A. Toropov, I. Raška Jr., A.P. Toropova, M. Raškova, A.M. Veselinović, and J.B. Veselinović, The study of the index of ideality of correlation as a new criterion of predictive potential of QSPR/QSAR-models, Sci. Total Environ. 659 (2019), pp. 1387–1394. doi:10.1016/j.scitotenv.2018.12.439
  • H. Ha, K. Park, G. Kang, and S. Lee, QSAR study using acute toxicity of Daphnia magna and Hyalella azteca through exposure to polycyclic aromatic hydrocarbons (PAHs), Ecotoxicology 28 (2019), pp. 333–342. doi:10.1007/s10646-019-02025-1
  • J.R. Seward, G.D. Sinks, and T.W. Schultz, Reproducibility of toxicity across mode of toxic action in the Tetrahymena population growth impairment assay, Aquat. Toxicol. 53 (2001), pp. 33–47. doi:10.1016/s0166-445x(00)00158-2
  • T.M. Martin, C.M. Grulke, D.M. Young, C.L. Russom, N.Y. Wang, C.R. Jackson, and M.G. Barron, Prediction of aquatic toxicity mode of action using linear discriminant and random forest models, J. Chem. Inf. Model. 53 (2013), pp. 2229–2239. doi:10.1021/ci400267h
  • A. Kienzler, K.A. Connors, M. Bonnell, M.G. Barron, A. Beasley, C.G. Inglis, T.J. Norberg-King, T. Martin, H. Sanderson, N. Vallotton, P. Wilson, and M.R. Embry, Mode of action classifications in the EnviroTox database: Development and implementation of a consensus MOA classification, Environ. Toxicol. Chem. 38 (2019), pp. 2294–2304. doi:10.1002/etc.4531
  • M.G. Barron, C.R. Lilavois, and T.M. Martin, MOAtox: A comprehensive mode of action and acute aquatic toxicity database for predictive model development, Aquat. Toxicol. 161 (2015), pp. 102–107. doi:10.1016/j.aquatox.2015.02.001
  • C.L. Russom, S.P. Bradbury, S.J. Broderius, D.E. Hammereister, and R.A. Drummond, Predicting modes of toxic action from chemical structure: Acute toxicity in the fathead minnow (Pimephales promelas), Environ. Toxicol. Chem. 16 (1997), pp. 948–967. doi:10.1002/etc.5620160514.
  • S. Bhatia, T. Schultz, D. Roberts, J. Shen, L. Kromidas, and A.M. Api, Comparison of Cramer classification between Toxtree, the OECD QSAR toolbox and expert judgment, Regul. Toxicol. Pharmacol. 71 (2015), pp. 52–62. doi:10.1016/j.yrtph.2014.11.005
  • H.J.M. Verhaar, C.J.V. Leeuwen, and J.L.M. Hermens, Classifying environmental pollutants part 1: Structural activity relationship for prediction of aquatic toxicity, Chemosphere 25 (1992), pp. 471–491. doi:10.1016/0045-6535(92)90280-5.
  • W.H.J. Vaes, E.U. Ramos, H.J.M. Verhaar, and J.L.M. Hermens, Acute toxicity of nonpolar versus polar narcosis: Is there a difference? Environ. Toxicol. Chem. 17 (1998), pp. 1380–1384. doi:10.1002/etc.5620170723.
  • B.I. Escher, R.I.L. Eggen, U. Schreiber, Z. Schreiber, E. Vye, B. Wisner, and R.P. Schwarzenbach, Baseline toxicity (narcotics) of organic chemicals determined by in-vitro membrane potential measurements in energy-transducing membranes, Environ. Sci. Technol. 36 (2002), pp. 1971–1979. doi:10.1021/es015844c
  • J.C. Dearden, M.T.D. Cronin, Y. Zhao, and O.A. Raevsky, QSAR studies of compounds acting by polar and non-polar narcotics: An examination of the role of polarisability, Quant. Struct. Act. Relat. 19 (2000), pp. 3–9. doi:10.1002/(SICI)1521-3838(200002)19:13.3.CO;2-E
  • D.W. Roberts and J.F. Costello, Mechanisms of action for general and polar narcosis: A difference in dimension, QSAR Comb. Sci. 22 (2003), pp. 226–233. doi:10.1002/qsar.200390016.
  • P.K. Gupta, Illustrated Toxicology With Study Questions, Academic Press, London, 2018, pp. 107–129.
  • G.M. Rand, Fundamentals of Aquatic Toxicology: Effects, Environmental Fate, and Risk Assessment, Taylor & Francis, Washington, 1995.
  • S.J. Enoch, M. Hewitt, M.T. Cronin, S. Azam, and J.C. Madden, Classification of chemicals according to mechanism of aquatic toxicity: An evaluation of the implementation of the Verhaar scheme in Toxtree, Chemosphere 73 (2008), pp. 243–248. doi:10.1016/j.chemosphere.2008.06.052
  • S.C. Basak, G.D. Grunwald, G.E. Host, G.J. Niemi, and S.P. Bradbury, A comparative study of molecular similarity, statistical, and neural methods for predicting toxic modes of action, Environ. Toxicol. Chem. 17 (1998), pp. 1056–1064. doi:10.1002/etc.5620170611
  • M. Vighi, M.M. Garlanda, and D. Calamari, QSARs for toxicity of organophosphorous pesticides to Daphnia and honeybees, Sci. Total Environ. 109/110 (1991), pp. 605–622. doi:10.1016/0048-9697(91)90213-X
  • M. Vighi and D. Calamari, QSARs for organotin compounds on Daphnia magna, Chemosphere 14 (1985), pp. 1925–1932. doi:10.1016/0045-6535(85)90134-1
  • R. Todeschini, M. Vighi, R. Provenzani, A. Finizio, and P. Gramatica, Modeling and prediction by using WHIM descriptors in QSAR studies: Toxicity of heterogeneous chemicals on Daphnia magna, Chemosphere 32 (1996), pp. 1527–1545. doi:10.1016/0045-6535(96)00060-4
  • L.W. Deneer, C.J. van Leeuwen, W. Seinen, J.L. Maas-Diepveen, and J.L.M. Hermens, QSAR study of the toxicity of nitrobenzene derivatives towards Daphnia magna, Chlorella pyrenoidosa and Photobacterium phosphoreum, Aquat. Toxicol. 15 (1989), pp. 83–98. doi:10.1016/0166-445X(89)90007-6
  • M.I. Hossain, B.B. Samir, M. El-Harbawi, A.N. Masri, M.I.A. Mutalib, G. Hefter, and C.Y. Yin, Development of a novel mathematical model using a group contribution method for prediction of ionic liquid toxicities, Chemosphere 85 (2011), pp. 990–994. doi:10.1016/j.chemosphere.2011.06.088
  • E. Zvinavashe, T. Du, T. Griff, H.H. van den Berg, A.E. Soffers, J. Vervoort, A.J. Murk, and I.M. Rietjens, Quantitative structure-activity relationship modeling of the toxicity of organothiophosphate pesticides to Daphnia magna and Cyprinus carpio, Chemosphere 75 (2009), pp. 1531–1538. doi:10.1016/j.chemosphere.2009.01.081
  • S. Cassani, S. Kovarich, E. Papa, P.P. Roy, L. van der Wal, and P. Gramatica, Daphnia and fish toxicity of (benzo)triazoles: Validated QSAR models, and interspecies quantitative activity–activity modelling, J. Hazard. Mat. 258–259 (2013), pp. 50–60. doi:10.1016/j.jhazmat.2013.04.025
  • S. Cassani, S. Kovarich, E. Papa, P.P. Roy, M. Rahmberg, S. Nilsson, U. Sahlin, N. Jeliazkova, N. Kochev, O. Pukalov, I.V. Tetko, S. Brandmaier, M.K. Durjava, B. Kolar, W. Peijnenburg, and P. Gramatica, Evaluation of CADASTER QSAR models for aquatic toxicity of (benzo)triazoles and prioritisation by consensus, ATLA 41 (2013), pp. 49–64. doi:10.1177/026119291304100107
  • I.V. Tetko, P. Sopasakis, P. Kunwar, S. Brandmaier, S. Novotarskyi, L. Charochkina, C. Prokopenko, and W.J. Peijnenburg, Prioritization of polybrominated diphenyl ethers (PBDEs) using the QSPR-THESAURUS web tool, ATLA 41 (2013), pp. 127–135. doi:10.1177/026119291304100112
  • J.C. Faucon, R. Bureau, J. Faisant, F. Briens, and S. Rault, Prediction of the Daphnia acute toxicity from heterogeneous data, Chemosphere 44 (2001), pp. 407–422. doi:10.1016/s0045-6535(00)00301-5
  • A.R. Katritzky, S.H. Slavov, I.S. Stoyanova-Slavova, I. Kahn, and M. Karelson, Quantitative structure–activity relationship (QSAR) modeling of EC50 of aquatic toxicities for Daphnia magna, J. Toxicol. Environ. Health A 72 (2009), pp. 1181–1190. doi:10.1080/15287390903091863
  • K.L. Kaiser and S.P. Niculescu, Modeling acute toxicity of chemicals to Daphnia magna: A probabilistic neural network approach, Environ. Toxicol. Chem. 20 (2001), pp. 420–431. doi:10.1002/etc.5620200225.
  • N. Basant, S. Gupta, and K.P. Singh, Modeling the toxicity of chemical pesticides in multiple test species using local and global QSTR approaches, Toxicol. Res. 5, 1 (2015), pp. 340–353. doi:10.1039/c5tx00321k
  • R. Kühne, R.U. Ebert, P.C. von der Ohe, N. Ulrich, W. Brack, and G. Schüürmann, Read across prediction of the acute toxicity of organic compounds toward the water flea Daphnia magna, Mol. Inf. 32 (2013), pp. 108–120. doi:10.1002/minf.201200085
  • E. Perales, J.I. García, E. Pires, L. Aldea, L. Lomba, and B. Giner, Ecotoxicity and QSAR studies of glycerol ethers in Daphnia magna, Chemosphere 183 (2017), pp. 277–285. doi:10.1016/j.chemosphere.2017.05.107
  • A. Furuhama, T.I. Hayashi, and N. Tatarazako, Acute to chronic estimation of Daphnia magna toxicity within the QSAAR framework, SAR QSAR Environ. Res. 27 (2016), pp. 833–850. doi:10.1080/1062936X.2016.1243151
  • A. Furuhama, T.I. Hayashi, H. Yamamoto, and N. Tatarazako, External validation of acute-to-chronic models for estimation of reproductive toxicity to Daphnia magna, SAR QSAR Environ. Res. 28 (2017), pp. 765–781. doi:10.1080/1062936X.2016.1243151
  • K. Khan and K. Roy, Ecotoxicological modelling of cosmetics for aquatic organisms: a QSTR approach, SAR QSAR Environ. Res. 28, 7 (2017), pp. 567–594. doi:10.1080/1062936X.2017.1352621
  • A.P. Toropova, A.A. Toropov, A.M. Veselinović, J.B. Veselinović, D. Leszczynska, and J. Leszczynski, Monte Carlo–based quantitative structure–activity relationship models for toxicity of organic chemicals to Daphnia magna, Environ. Toxicol. Chem. 35 (2016), pp. 2691–2697. doi:10.1002/etc.3466
  • K.A. Hossain and K. Roy, Chemometric modeling of aquatic toxicity of contaminants of emerging concern (CECs) in Dugesia japonica and its interspecies correlation with daphnia and fish: QSTR and QSTTR approaches, Ecotoxicol. Environ. Saf. 166 (2018), pp. 92–101. doi:10.1016/j.ecoenv.2018.09.068
  • R. Aalizadeh, P.C. von der Ohe, and N.S. Thomaidis, Prediction of acute toxicity of emerging contaminants on the water flea Daphnia magna by ant colony optimization–support vector machine QSTR models, Environ. Sci.: Processes Impacts 19 (2017), pp. 438–448. doi:10.1039/c6em00679e
  • K. Khan, S. Kar, H. Sanderson, K. Roy, and J. Leszczynski, Ecotoxicological modeling, ranking and prioritization of pharmaceuticals using QSTR and i-QSTTR approaches: Application of 2D and fragment based descriptors, Mol. Inf. 38 (2019), pp. 1800078. doi:10.1002/minf.201800078
  • A. Rácz, D. Bajusz, and K. Héberger, Modelling methods and cross-validation variants in QSAR: A multi-level analysis, SAR QSAR Environ. Res. 29 (2018), pp. 661–674. doi:10.1080/1062936X.2018.1505778
  • A. Golbamaki, A. Cassano, A. Lombardo, Y. Moggio, M. Colafranceschi, and E. Benfenati, Comparison of in silico models for prediction of Daphnia magna acute toxicity, SAR QSAR Environ. Res. 25 (2014), pp. 673–694. doi:10.1080/1062936X.2014.923041
  • M. Cassotti, D. Ballabio, V. Consonni, A. Mauri, I. Tetko, and R. Todeschini, Prediction of acute aquatic toxicity toward Daphnia magna by using the GA-kNN method, Altern. Lab Anim. 42 (2014), pp. 31–41. doi:10.1177/026119291404200106
  • OECD, Guidance Document on the Validation of (Quantitative) Structure-Activity Relationship [(Q)SAR] Models, Tech. Rep. ENV/JM/MONO(2007)2, Organisation for Economic Cooperation and Development, Paris, FR, 2007. doi:10.1787/9789264085442-en
  • P. Polishchuk, Interpretation of quantitative structure–activity relationship models: Past, present, and future, J. Chem. Inf. Model. 57 (2017), pp. 2618–2639. doi:10.1021/acs.jcim.7b00274
  • O.A. Raevsky, A.N. Razdol’sky, V.D. Tonkopii, I.V. Iofina, and A.O. Zagrebin, Classificatory and quantitative models of the relationship between the structures of chemical compounds and their toxicity for Daphnia magna, Pharm. Chem. J. 42 (2008), pp. 329–334. doi:10.1007/s11094-008-0119-5
  • V.Y. Grigor’ev, A.N. Razdol’skii, A.O. Zagrebin, V.D. Tonkopii, and O.A. Raevskii, QSAR classification models of acute toxicity of organic compounds with respect to Daphnia magna, Pharm. Chem. J. 48 (2014), pp. 242–245. doi:10.1007/s11094-014-1086-7
  • T. Martin, P. Harten, and D. Young, TEST (Toxicity Estimation Software Tool) V 4.1, US Environmental Protection Agency, Washington DC, 2012; software available at https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-test.
  • P.C. von der Ohe, R. Kühne, R.U. Ebert, R. Altenburger, M. Liess, and G. Schüürmann, Structural alerts-a new classification model to discriminate excess toxicity from narcotic effect levels of organic compounds in the acute daphnid assay, Chem. Res. Toxicol. 18 (2005), pp. 536–555. doi:10.1021/tx0497954
  • P.G. Polishchuk, SIRMS-SPCI, knowledge-mining software tool for automatic dataset analysis; software available at http://www.qsar4u.com/pages/sirms_qsar.php.
  • V.E. Kuz’min, A.G. Artemenko, and E.N. Muratov, Hierarchical QSAR technology based on the simplex representation of molecular structure, J. Comput. Aided Mol. Des. 22 (2008), pp. 403–421. doi:10.1007/s10822-008-9179-6
  • Standardizer, version 5.4; ChemAxon, Budapest, Hungary; software available at https://docs.chemaxon.com/display/docs/Standardizer+Command-line+Application.
  • Scikit-learn - Python module for machine learning; software available at https://scikit-learn.org/stable/.
  • C. Cortes and V.N. Vapnik, Support-vector networks, Machine Learn. 20 (1995), pp. 273–297. doi:10.1007/BF00994018.
  • J.H. Friedman, Greedy function approximation: A gradient boosting machine, Ann. Statist. 29 (2001), pp. 1189–1232. doi:10.1214/aos/1013203451
  • A.V. Zakharov, M.L. Peach, M. Sitzmann, and M.C. Nicklaus, QSAR modeling of imbalanced high-throughput screening data in PubChem, J. Chem. Inf. Model. 54 (2014), pp. 705–712. doi:10.1021/ci400737s
  • I. Mitra, A. Saha, and K. Roy, Exploring quantitative structure–activity relationship studies of antioxidant phenolic compounds obtained from traditional Chinese medicinal plants, Molec. Simul. 36 (2010), pp. 1067–1079. doi:10.1080/08927022.2010.503326
  • P. Polishchuk, O. Tinkov, T. Khristova, L. Ognichenko, A. Kosinskaya, A. Varnek, and V. Kuz’min, Structural and physico-chemical interpretation (SPCI) of QSAR models and its comparison with matched molecular pair analysis, J. Chem. Inf. Model. 56 (2016), pp. 1455–1469. doi:10.1021/acs.jcim.6b00371
  • HYBOT program package; software available at http://molpro.ipac.ac.ru.
  • O.A. Raevsky, V.Y. Grigor’ev, D.B. Kireev, and N.S. Zefirov, Complete thermodynamic description of H-bonding in the framework of multiplicative approach, Quant. Struct.-Act. Relat. 11 (1992), pp. 49–63. doi:10.1002/qsar.19920110109
  • L. Breiman, RRforest; software available at http://www.stat.berkeley.edu/~breiman/RandomForests/reg_examples/RFR.f.
  • J. Colmenares, flssvm; software available at https://github.com/jbcolme/fortran-ls-svm.
  • H. Kubinyi, Variable selection in QSAR studies. I. An evolutionary algorithm, Quant. Struct.-Act. Relat. 13 (1994), pp. 285–294. doi:10.1002/qsar.19940130306
  • I. Sushko, A.K. Pandey, S. Novotarskyi, R. Körner, M. Rupp, W. Teetz, S. Brandmaier, A. Abdelaziz, V.V. Prokopenko, V.Y. Tanchuk, R. Todeschini, A. Varnek, G. Marcou, P. Ertl, V. Potemkin, M. Grishina, J. Gasteiger, C. Schwab, I.I. Baskin, V.A. Palyulin, E.V. Radchenko, W.J. Welsh, V. Kholodovych, D. Chekmarev, A. Cherkasov, J. Aires-de-Sousa, Q.Y. Zhang, A. Bender, F. Nigsch, L. Patiny, and I.V. Tetko, Online chemical modeling environment (OCHEM): Web platform for data storage, model development and publishing of chemical information, J. Comput.-Aided Molec. Design 25 (2011), pp. 533–554. doi:10.1007/s10822-011-9440-2
  • L.B. Kier and L.H. Hall, An electrotopological-state index for atoms in molecules, Pharm. Res. 7 (1990), pp. 801–807. doi:10.1023/a:1015952613760
  • I.V. Tetko and V.Y. Tanchuk, Application of associative neural networks for prediction of lipophilicity in ALOGPS 2.1 program, J. Chem. Inf. Comput. Sci. 42 (2002), pp. 1136–1145. doi:10.1021/ci025515j
  • I.V. Tetko, I. Sushko, A.K. Pandey, H. Zhu, A. Tropsha, E. Papa, T. Oberg, R. Todeschini, D. Fourches, and A. Varnek, Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: Focusing on applicability domain and overfitting by variable selection, J. Chem. Inf. Model. 48 (2008), pp. 1733–1746. doi:10.1021/ci800151m
  • OECD, QSAR toolbox v. 4.4, 2020; software available at https://qsartoolbox.org/.
  • E. Mombelli and J. Devillers, Evaluation of the OECD (Q)SAR application toolbox and toxtree for predicting and profiling the carcinogenic potential of chemicals, SAR QSAR Environ. Res. 21 (2010), pp. 731–752. doi:10.1080/1062936X.2010.528598
  • V.M. Alves, E.N. Muratov, S.J. Capuzzi, R. Politi, Y. Low, R.C. Braga, A.V. Zakharov, A. Sedykh, E. Mokshyna, S. Farag, C.H. Andrade, V.E. Kuz’min, D. Fourchesh, and A. Tropsha, Alarms about structural alerts, Green Chem. 18 (2016), pp. 4348–4360. doi:10.1039/C6GC01492E
  • X. Li, L. Chen, F. Cheng, Z. Wu, H. Bian, C. Xu, W. Li, G. Liu, X. Shen, and Y. Tang, In silico prediction of chemical acute oral toxicity using multi-classification methods, J. Chem. Inf. Model. 54 (2014), pp. 1061–1069. doi:10.1021/ci5000467
  • S. Kar and K. Roy, QSAR modeling of toxicity of diverse organic chemicals to Daphnia magna using 2D and 3D descriptors, J. Hazard. Mater. 177 (2010), pp. 344–351. doi:10.1016/j.jhazmat.2009.12.038
  • K. Khan, P.M. Khan, G. Lavado, C. Valsecchi, J. Pasqualini, D. Baderna, M. Marzo, A. Lombardo, K. Roy, and E. Benfenati, QSAR modeling of Daphnia magna and fish toxicities of biocides using 2D descriptors, Chemosphere 229 (2019), pp. 8–17. doi:10.1016/j.chemosphere.2019.04.204
  • O.V. Tinkov, L.N. Ognichenko, V.E. Kuz’min, L.G. Gorb, A.P. Kosinskaya, N.N. Muratov, E.N. Muratov, F.C. Hill, and J. Leszczynski, Computational assessment of environmental hazards of nitroaromatic compounds: Influence of the type and position of aromatic ring substituents on toxicity, Struct. Chem. 27 (2016), pp. 191–198. doi:10.1007/s11224-015-0715-4
  • J.L. Hermens, Electrophiles and acute toxicity to fish, Environ. Health Perspect. 87 (1990), pp. 219–225. doi:10.1289/ehp.9087219
  • J.A. Schwöbel, Y.K. Koleva, S.J. Enoch, F. Bajot, M. Hewitt, J.C. Madden, D.W. Roberts, T.W. Schultz, and M.T. Cronin, Measurement and estimation of electrophilic reactivity for predictive toxicology, Chem. Rev. 111 (2011), pp. 2562–2596. doi:10.1021/cr100098n
  • A. Kienzler, M.G. Barron, S.E. Belanger, A. Beasley, and M.R. Embry, Mode of action (MOA) assignment classifications for ecotoxicology: An evaluation of approaches, Environ. Sci. Technol. 51 (2017), pp. 10203–10211. doi:10.1021/acs.est.7b02337
  • M.B. Čolović, D.Z. Krstić, T.D. Lazarević-Pašti, A.M. Bondžić, and V.M. Vasić, Acetylcholinesterase inhibitors: Pharmacology and toxicology, Curr. Neuropharmacol. 11 (2013), pp. 315–335. doi:10.2174/1570159X11311030006
  • D.M. Soderlund, J.M. Clark, L.P. Sheets, L.S. Mullin, V.J. Piccirillo, D. Sargent, J.T. Stevens, and M.L. Weiner, Mechanisms of pyrethroid neurotoxicity: Implications for cumulative risk assessment, Toxicology 171 (2002), pp. 3–59. doi:10.1016/s0300-483x(01)00569-8
  • R.M. Joy, Mode of action of lindane, dieldrin and related insecticides in the central nervous system, Neurobehav. Toxicol. Teratol. 4 (1982), pp. 813–823.
  • H. Terada, Uncouplers of oxidative phosphorylation, Environ. Health Perspect. 87 (1990), pp. 213–218. doi:10.1289/ehp.9087213
  • J. Grundlingh, P.I. Dargan, M. El-Zanfaly, and D.M. Wood, 2,4- Dinitrophenol (DNP): A weight loss agent with significant acute toxicity and risk of death, J. Med. Toxicol. 7 (2011), pp. 205–212. doi:10.1007/s13181-011-0162-6
  • C. Niederer, R. Behra, A. Harder, R.P. Schwarzenbach, and B.I. Escher, Mechanistic approaches for evaluating the toxicity of reactive organochlorines and epoxides in green algae, Environ. Toxicol. Chem. 23 (2004), pp. 697–704. doi:10.1897/03-83
  • A. Moghe, S. Ghare, B. Lamoreau, M. Mohammad, S. Barve, C. McClain, and S. Joshi-Barve, Molecular mechanisms of acrolein toxicity: Relevance to human disease, Toxicol. Sci. 142 (2015), pp. 242–255. doi:10.1093/toxsci/kfu233

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.