550
Views
17
CrossRef citations to date
0
Altmetric
Research Article

Consensus QSAR models estimating acute toxicity to aquatic organisms from different trophic levels: algae, Daphnia and fish

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 655-675 | Received 28 May 2020, Accepted 15 Jul 2020, Published online: 17 Aug 2020

References

  • European Commission, Regulation (EC) no 1907/2006 of the European parliament and of the council of 18 December 2006 concerning the registration, evaluation, authorisation and restric- tion of chemicals (REACH), establishing a European chemicals agency, amend-ing directive 1999/45/ECC and repealing council regulation (EEC) No 793/93 and commission regulation (EC) No 1488/94 as well as council directive 76/769/EEC and commission directives 91/155/EEC, 93/67/EEC, 93/105/EEC and 2000/21/EC, Off. J. Eur. Union. 50 (2007), pp. 1–281.
  • K.P. Singh, S. Gupta, A. Kumar, and D. Mohan, Multispecies QSAR modeling for predicting the aquatic toxicity of diverse organic chemicals for regulatory toxicology, Chem. Res. Toxicol. 27 (2014), pp. 741–753. doi:10.1021/tx400371w.
  • OECD, OECD Guidelines for the Testing of Chemicals, Section 3: Effects on Biotic Systems, Organisation for Economic Cooperation and Development, Paris, FR, 2019. Available at http://www.oecd.org/env/ehs/testing/oecdguidelinesforthetestingofchemicals.htm.
  • V. Aruoja, M. Moosus, A. Kahru, M. Sihtmäe, and U. Maran, Measurement of baseline toxicity and QSAR analysis of 50 non-polar and 58 polar narcotic chemicals for the alga Pseudokirchneriella subcapitata, Chemosphere 96 (2014), pp. 23–32. doi:10.1016/j.chemosphere.2013.06.088.
  • P. Gramatica, S. Cassani, P.P. Roy, S. Kovarich, C.W. Yap, and E. Papa, QSAR modeling is not “Push a button and find a correlation”: A case study of toxicity of (Benzo-)triazoles on algae, Mol. Inform. 31 (2012), pp. 817–835. doi:10.1002/minf.201200075.
  • A. Levet, C. Bordes, Y. Clément, P. Mignon, C. Morell, H. Chermette, P. Marote, and P. Lantéri, Acute aquatic toxicity of organic solvents modeled by QSARs, J. Mol. Model. 22 (2016), pp. 288–298. doi:10.1007/s00894-016-3156-0.
  • K. Khan, P.M. Khan, G. Lavado, C. Valsecchi, J. Pasqualini, D. Baderna, M. Marzo, A. Lombardo, K. Roy, and E. Benfenati, QSAR modeling of Daphnia magna and fish toxicities of biocides using 2D descriptors, Chemosphere 229 (2019), pp. 8–17. doi:10.1016/j. chemosphere.2019.04.204.
  • C. Bertinetto, C. Duce, R. Solaro, M.R. Tiné, A. Micheli, K. Héberger, A. Miličević, and S. Nikolić, Modeling of the acute toxicity of benzene derivatives by complementary QSAR methods, Match 70 (2013), pp. 1005–1021.
  • US EPA, Estimation Programs Interface Suite™ for Microsoft® Windows V4.11, US Environmental Protection Agency, Washington DC, 2012; software available at https://www.epa.gov/tscascreening-tools/epi-suitetm-estimation-program-interface.
  • E. Benfenati, A. Manganaro, and G. Gini, VEGA-QSAR: AI inside a platform for predictive toxicology. Proceedings of the workshop ‘Popularize Artificial Intelligence’ 2013, December 5th 2013, Turin, Italy, 2013, published on CEUR Workshop Proceedings Vol 1107.
  • T. Martin, P. Harten, and D. Young, (T.E.S.T.) Toxicity Estimation Software Tool V 4.1, US Environmental Protection Agency, 2012; software available at https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-test.
  • T. Sheffield and R.S. Judson, Ensemble QSAR modeling to predict multispecies fish toxicity lethal concentrations and points of departure, Environ. Sci. Technol. 53 (2019), pp. 2793–2802. doi:10.1021/acs.est.9b03957.
  • K. Khan and K. Roy, Ecotoxicological QSAR modelling of organic chemicals against Pseudokirchneriella subcapitata using consensus predictions approach, SAR QSAR Environ. Res. 30 (2019), pp. 665–681. doi:10.1080/1062936X.2019.1648315.
  • S. Kar and K. Roy, QSAR modeling of toxicity of diverse organic chemicals to Daphnia magna using 2D and 3D descriptors, J. Hazard. Mater. 177 (2010), pp. 344–351. doi:10.1016/j.jhazmat.2009.12.038.
  • M. Cassotti, D. Ballabio, V. Consonni, A. Mauri, I.V. Tetko, and R. Todeschini, Prediction of acute aquatic toxicity toward Daphnia magna by using the GA-kNN method, ATLA Altern. To Lab. Anim. 42 (2014), pp. 31–41. doi:10.1177/026119291404200106.
  • K.L.E. Kaiser and S.P. Niculescu, Modeling acute toxicity of chemicals to Daphnia magna: Aprobabilistic neural network approach, Env. Tox. Chem. 20 (2001), pp. 420–431. doi:10.1002/etc.5620200225.
  • A. Golbamaki, A. Cassano, A. Lombardo, Y. Moggio, M. Colafranceschi, and E. Benfenati, Comparison of in silico models for prediction of Daphnia magna acute toxicity, SAR QSAREnviron. Res. 25 (2014), pp. 673–694. doi:10.1080/1062936X.2014.923041.
  • Y. Wang, M. Zheng, J. Xiao, Y. Lu, F. Wang, J. Lu, X. Luo, W. Zhu, H. Jiang, and K. Chen, Using support vector regression coupled with the genetic algorithm for predicting acute toxicity to the fathead minnow, SAR QSAR Environ. Res. 21 (2010), pp. 559–570.doi:10.1080/1062936X.2010.502300.
  • M. Cassotti, D. Ballabio, R. Todeschini, and V. Consonni, A similarity-based QSAR model for predicting acute toxicity towards the fathead minnow (Pimephales promelas), SAR QSAR Environ. Res. 26 (2015), pp. 217–243. doi:10.1080/1062936X.2015.1018938.
  • K. Khan, D. Baderna, C. Cappelli, C. Toma, A. Lombardo, K. Roy, and E. Benfenati, Ecotoxicological QSAR modeling of organic compounds against fish: Application of fragment based descriptors in feature analysis, Aquat. Toxicol. 212 (2019), pp. 162–174. doi:10.1016/j.aquatox.2019.05.011.
  • OECD, Guidance Document on the Validation of (Quantitative) Structure Activity Relationship [(Q)SAR] Models, Tech. Rep. ENV/JM/MONO(2007)2, Organisation for Economic Cooperation and Development, Paris, FR, 2007.
  • G. Marcou, D. Horvath, F. Bonachera, and A. Varnek, Laboratoire De Chemoinformatique UMR 7140 CNRS, University of Strasbourg, Strasbourg, FR, 2019. Available at http://infochim. 520u-strasbg.fr.
  • OECD, Data From: EChemPortal: Global Portal to Information on Chemical Substances, Organisation for Economic Co-operation Development; dataset available at https://www.echemportal.org/echemportal/index.action.
  • US EPA, Data From: ECOTOX Knowledgebase. US Environmental Protection Agency, 2017; 525 dataset available at https://cfpub.epa.gov/ecotox/.
  • S. Cassani, S. Kovarich, E. Papa, P.P. Roy, L. van der Wal, and P. Gramatica, Daphnia and fish toxicity of (benzo)triazoles: Validated QSAR models, and interspecies quantitative activity-activity modelling, J. Hazard. Mater. 258–259 (2013), pp. 50–60. doi:10.1016/j.jhazmat.2013.04.025.
  • A.A. Toropov, A.P. Toropova, M. Marzo, J. Lou Dorne, N. Georgiadis, and E. Benfenati, QSAR models for predicting acute toxicity of pesticides in rainbow trout using the CORAL software and EFSA’s OpenFoodTox database, Environ. Toxicol. Pharmacol. 53 (2017), pp. 158–163.doi:10.1016/j.etap.2017.05.011.
  • X. Wu, Q. Zhang, and J. Hu, QSAR study of the acute toxicity to fathead minnow based on a large dataset, SAR QSAR Environ. Res. 27 (2016), pp. 147–164. doi:10.1080/1062936X.2015.1137353.
  • A. Furuhama, K. Hasunuma, T.I. Hayashi, and N. Tatarazako, Predicting algal growth inhibition toxicity: Three-step strategy using structural and physicochemical properties, SAR QSAR Environ. Res. 27 (2016), pp. 343–362. doi:10.1080/1062936X.2016.1174151.
  • OASIS, QSAR Toolbox V 4.3, OASIS Laboratory of mathematical chemistry, Burgas, BG, 2017; software available at http://oasis-lmc.org/products/software/toolbox.aspx.
  • M. Berthold, N. Cebron, F. Dill, T. Gabriel, T. Kötter, T. Meinl, P. Ohl, K. Thiel, and B. Wiswedel, KNIME - the konstanz information miner: Version 2.0 and beyond, SIGKDD Explor. 11 (2009), 545 pp. 26–31. doi:10.1145/1656274.1656280.
  • NIH, PubChem, National Library of Medicine, National Center for Biotechnology Information, Bethesda, Maryland, 2019. Available at https://pubchem.ncbi.nlm.nih.gov/.
  • H.-J. Klimisch, M. Andreae, and U. Tillmann, A systematic approach for evaluating the quality of experimental toxicological and ecotoxicological data, Regul. Toxicol. Pharmacol. 25 (1997), pp. 1–5. doi:10.1006/rtph.1996.1076.
  • F. Ruggiu, G. Marcou, A. Varnek, and D. Horvath, ISIDA property-labelled fragment descriptors, Mol. Inform. 29 (2010), pp. 855–868. doi:10.1002/minf.201000099.
  • F. Lunghini, G. Marcou, P. Azam, R. Patoux, M.H. Enrici, F. Bonachera, D. Horvath, and A. Varnek, QSPR models for bioconcentration factor (BCF): Are they able to predict data of industrial interest? SAR QSAR Environ. Res. 30 (2019), pp. 507–524. doi:10.1080/1062936X.2019.1626278.
  • F. Lunghini, G. Marcou, P. Azam, D. Horvath, R. Patoux, E. Van Miert, and A. Varnek, Consensus models to predict oral rat acute toxicity and validation on a dataset coming from the industrial context, SAR QSAR Environ. Res. 30 (2019), pp. 879–897. doi:10.1080/1062936X.2019.1672089.
  • F. Lunghini, G. Marcou, P. Gantzer, P. Azam, D. Horvath, E. Van Miert, and A. Varnek, Modelling of ready biodegradability based on combined public and industrial data sources, SAR QSAR Environ. Res. 31 (2020), pp. 171–186. doi:10.1080/1062936X.2019.1697360.
  • N. Kireeva, I.I. Baskin, H.A. Gaspar, D. Horvath, G. Marcou, and A. Varnek, Generative Topographic Mapping (GTM): Universal tool for data visualization, structure-activity modeling and dataset comparison, Mol. Inform. 31 (2012), pp. 301–312. doi:10.1002/minf.201100163.
  • C.M. Bishop, M. Svensén, C.K.I. Williams, and M. Svens, The generative topographic mapping, Neural Comput 10 (1998), pp. 215–234. doi:10.1162/089976698300017953.
  • D. Horvath, J. Brown, G. Marcou, and A. Varnek, An evolutionary optimizer of LIBSVM models, Challenges 5 (2014), pp. 450–472. doi:10.3390/challe5020450.
  • C. Chih-Chung and L. Chih-Jen, LIBSVM: A library for support vector machines, ACM Trans. Inte ll. Syst. Technol. 2 (2011), pp. 1–27. doi:10.1145/1961189.1961199.
  • P. Gramatica, Principles of QSAR models validation: Internal and external, QSAR Comb. Sci. 26 (2007), pp. 694–701. doi:10.1002/qsar.200610151.
  • G. Marcou, D. Horvath, V. Solov’Ev, A. Arrault, P. Vayer, and A. Varnek, Interpretability of SAR/ QSAR models of any complexity by atomic contributions, Mol. Inform. 31 (2012), pp. 639–642. doi:10.1002/minf.201100136.
  • G. Gini, G. Giuseppina, T. Ferrari, A. Lombardo, A. Cassano, and E. Benfenati, A new QSAR model for acute fish toxicity based on mined structural alerts, J. Toxicol. Risk Assess. 5 (2019), pp. 2572–2580.
  • C.I. Cappelli, A. Cassano, A. Golbamaki, Y. Moggio, A. Lombardo, M. Colafranceschi, and E. Benfenati, Assessment of in silico models for acute aquatic toxicity towards fish under REACH regulation, SARQSAR Environ. Res. 26 (2015), pp. 977–999. doi:10.1080/1062936X.2015.1104519.
  • M. Pavan, A.P. Worth, and T.I. Netzeva, Comparative Assessment of QSAR Models for Aquatic Toxicity, Tech. Rep. 21750EN, Joint Research Centre, Ispra, IT, 2005.
  • S. Lozano, E. Lescot, M.P. Halm, A. Lepailleur, R. Bureau, and S. Rault, Prediction of acute toxicity in fish by using QSAR methods and chemical modes of action, J. Enzyme Inhib. Med. Chem. 25 (2010), pp. 195–203. doi:10.3109/14756360903169857.
  • M. Hrovat, H. Segner, and S. Jeram, Variability of in vivo fish acute toxicity data, Regul. Toxicol. Pharmacol. 54 (2009), pp. 294–300. doi:10.1016/j.yrtph.2009.05.013.
  • H.J.M. Verhaar, C.J. van Leeuwen, and J.L.M. Hermens, Classifying environmental pollutants, Chemosphere 25 (1992), pp. 471–491. doi:10.1016/0045-6535(92)90280-5.
  • C.L. Russom, S.P. Bradbury, S.J. Broderius, D.E. Hammermeister, and R.A. Drummond, Predicting modes of toxic action from chemical structure: Acute toxicity in the fathead minnow (Pimephales promelas), Environ. Toxicol. Chem. 16 (2005), pp. 948. doi:10.1002/etc.5620160514.
  • S.J. Enoch, M. Hewitt, M.T.D. Cronin, S. Azam, and J.C. Madden, Classification of chemicals according to mechanism of aquatic toxicity: An evaluation of the implementation of the Verhaar scheme in Toxtree, Chemosphere 73 (2008), pp. 243–248. doi:10.1016/j.chemosphere.2008.06.052.
  • P.C. Thomas, P. Bicherel, and F.J. Bauer, How in silico and QSAR approaches can increase confidence in environmental hazard and risk assessment, Integr. Environ. Assess. Manag. 15 (2019), pp. 40–50. doi:10.1002/ieam.4108.
  • N. Burden, S.K. Maynard, L. Weltje, and J.R. Wheeler, The utility of QSARs in predicting acute fish toxicity of pesticide metabolites: A retrospective validation approach, Regul. Toxicol. Pharmacol. 80 (2016), pp. 241–246. doi:10.1016/j.yrtph.2016.05.032.
  • OECD, Guidance Document on Aquatic Toxicity Testing of Difficult Substances and Mixtures, Tech. Rep. JT03442844, Organisation for Economic Co-operation Development, Paris, FR, 1992.
  • G.E. Bragin, C.W. Davis, M.H. Kung, B.A. Kelley, C.A. Sutherland, and M.A. Lampi, Biodegradation and ecotoxicity of branched alcohol ethoxylates: Application of the target lipid model and implications for environmental classification, J. Surfactants Deterg. 23 (2020), pp. 383–403. doi:10.1002/jsde.12359.
  • D.W. Roberts, QSAR issues in aquatic toxicity of surfactants, Sci. Total Environ. 109 (1991), pp.557–568. doi:10.1016/0048-9697(91)90209-W.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.