295
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Identification of selective Lyn inhibitors from the chemical databases through integrated molecular modelling approaches

, , , ORCID Icon, , , & ORCID Icon show all
Pages 1-27 | Received 22 Apr 2020, Accepted 19 Jul 2020, Published online: 09 Nov 2020

References

  • E. Ingley, Functions of the Lyn tyrosine kinase in health and disease, Cell. Commun. Signal. 10 (2012), pp. 21–31. doi:10.1186/1478-811X-10-21.
  • G. Manning, D.B. Whyte, R. Martinez, T. Hunter, and S. Sudarsanam, The protein kinase complement of the human genome, Science 298 (2002), pp. 1912–1934. doi:10.1126/science.1075762.
  • S.J. Parsons and J.T. Parsons, Src family kinases, key regulators of signal transduction, Oncogene 23 (2004), pp. 7906–7909. doi:10.1038/sj.onc.1208160.
  • E. Ingley, Src family kinases: Regulation of their activities, levels and identification of new pathways, Biochim. Biophys. Acta 1784 (2008), pp. 56–65. doi:10.1016/j.bbapap.2007.08.012.
  • H. Pham, C. Birtolo, C. Chheda, W. Yang, M.D. Rodriguez, S.T. Liu, G. Gugliotta, M.S. Lewis, V. Cirulli, S.J. Pandol, and A. Ptasznik, Essential role of Lyn in fibrosis, Front. Physiol. 7 (2016), pp. 1–11. doi:10.3389/fphys.2016.00387.
  • E.J. Brodie, S. Infantino, M.S.Y. Low, and D.M. Tarlinton, Lyn, lupus, and (B) lymphocytes, a lesson on the critical balance of kinase signaling in immunity, Front. Immunol. 9 (2018), pp. 401–410. doi:10.3389/fimmu.2018.00401.
  • K. Kasahara, Y. Nakayama, K. Ikeda, Y. Fukushima, D. Matsuda, S. Horimoto, and N. Yamaguchi, Trafficking of Lyn through the golgi caveolin involves the charged residues on alphaE and alphaI helices in the kinase domain, J. Cell. Biol. 165 (2004), pp. 641–652. doi:10.1083/jcb.200403011.
  • M.L. Dykstra, A. Cherukuri, and S.K. Pierce, Floating the raft hypothesis for immune receptors: Access to rafts controls receptor signaling and trafficking, Traffic 2 (2001), pp. 160–166. doi:10.1034/j.1600-0854.2001.020302.x.
  • T. Hayashi, H. Umemori, M. Mishina, and T. Yamamoto, The AMPA receptor interacts with and signals through the protein tyrosine kinase Lyn, Nature 397 (1999), pp. 72–76. doi:10.1038/16269.
  • A. Hirao, X.L. Huang, T. Suda, and N. Yamaguchi, Overexpression of C-terminal Src kinase homologous kinase suppresses activation of Lyn tyrosine kinase required for VLA5-mediated Dami cell spreading, J. Biol. Chem. 273 (1998), pp. 10004–10010. doi:10.1074/jbc.273.16.10004.
  • H.M. Dingerdissen, J. Torcivia-Rodriguez, Y. Hu, T.C. Chang, R. Mazumder, and R. Kahsay, BioMuta and BioXpress: Mutation and expression knowledgebases for cancer biomarker discovery, Nucleic Acids Res. 46 (2018), pp. D1128–D1136. doi:10.1093/nar/gkx907.
  • E. Rupniewska, R. Roy, F.A. Mauri, X. Liu, M. Kaliszczak, G. Bellezza, L. Cagini, M. Barbareschi, S. Ferrero, A.M. Tommasi, E. Aboagye, M.J. Seckl, and O.E. Pardo, Targeting autophagy sensitises lung cancer cells to Src family kinase inhibitors, Oncotarget 9 (2018), pp. 27346–27362. doi:10.18632/oncotarget.25213.
  • A.K. Roseweir, T. Qayyum, Z. Lim, R. Hammond, A.I. MacDonald, S. Fraser, G.M. Oades, M. Aitchison, R.J. Jones, and J. Edwards, Nuclear expression of Lyn, a Src family kinase member, is associated with poor prognosis in renal cancer patients, BMC Cancer 16 (2016), pp. 1–10. doi:10.1186/s12885-016-2254-9.
  • D.R. Croucher, F. Hochgrafe, L. Zhang, L. Liu, R.J. Lyons, D. Rickwood, C.M. Tactacan, B.C. Browne, N. Ali, H. Chan, R. Shearer, D. Gallego-Ortega, D.N. Saunders, A. Swarbrick, and R.J. Daly, Involvement of Lyn and the atypical kinase SgK269/PEAK1 in a basal breast cancer signaling pathway, Cancer Res. 73 (2013), pp. 1969–1980. doi:10.1158/0008-5472.CAN-12-1472.
  • B. Elsberger, R. Fullerton, S. Zino, F. Jordan, T.J. Mitchell, V.G. Brunton, E.A. Mallon, P.G. Shiels, and J. Edwards, Breast cancer patients’ clinical outcome measures are associated with Src kinase family member expression, Br. J. Cancer 103 (2010), pp. 899–909. doi:10.1038/sj.bjc.6605829.
  • N.K. Williams, I.S. Lucet, S.P. Klinken, E. Ingley, and J. Rossjohn, Crystal structures of the Lyn protein tyrosine kinase domain in its Apo- and inhibitor-bound state, J. Biol. Chem. 284 (2009), pp. 284–291. doi:10.1074/jbc.M807850200.
  • S. Berndt, V.V. Gurevich, and T.M. Iverson, Crystal structure of the SH3 domain of human Lyn non-receptor tyrosine kinase, PLoS One 14 (2019), pp. e0215140. doi:10.1371/journal.pone.0215140.
  • C. Dos Santos, C. Demur, V. Bardet, N. Prade-Houdellier, B. Payrastre, and C. Recher, A critical role for Lyn in acute myeloid leukemia, Blood 111 (2008), pp. 2269–2279. doi:10.1182/blood-2007-04-082099.
  • A.L. Samuels, S.P. Klinken, and E. Ingley, Liar, a novel Lyn-binding nuclear/cytoplasmic shuttling protein that influences erythropoietin-induced differentiation, Blood 113 (2009), pp. 3845–3856. doi:10.1182/blood-2008-04-153452.
  • K. Borzęcka-Solarz, J. Dembińska, A. Hromada-Judycka, G. Traczyk, A. Ciesielska, E. Ziemlińska, A. Świątkowska, and K. Kwiatkowska, Association of Lyn kinase with membrane rafts determines its negative influence on LPS-induced signaling, Mol. Biol. Cell 28 (2017), pp. 1147–1159. doi:10.1091/mbc.e16-09-0632.
  • P. Sutton, J.A. Borgia, P. Bonomi, and J.M.D. Plate, Lyn, a Src family kinase, regulates activation of epidermal growth factor receptors in lung adenocarcinoma cells, Mol. Cancer 12 (2013), pp. 76. doi:10.1186/1476-4598-12-76.
  • G. Tornillo, C. Knowlson, H. Kendrick, J. Cooke, H. Mirza, I. Aurrekoetxea-Rodriguez, M.D.M. Vivanco, N.E. Buckley, A. Grigoriadis, and M.J. Smalley, Dual mechanisms of Lyn kinase dysregulation drive aggressive behavior in breast cancer cells, Cell Rep. 25 (2018), pp. 3674–3692 e10. doi:10.1016/j.celrep.2018.11.103.
  • L.J. Schwarz, E.M. Fox, J.M. Balko, J.T. Garrett, M.G. Kuba, M.V. Estrada, A.M. González-Angulo, G.B. Mills, M. Red-Brewer, I.A. Mayer, V. Abramson, M. Rizzo, M.C. Kelley, I.M. Meszoely, and C.L. Arteaga, LYN-activating mutations mediate antiestrogen resistance in estrogen receptor–positive breast cancer, J. Clin. Invest. 124 (2014), pp. 5490–5502. doi:10.1172/JCI72573.
  • S. Chakraborty, T. Inukai, L. Fang, M. Golkowski, and D.J. Maly, Targeting dynamic ATP-binding site features allows discrimination between highly homologous protein kinases, ACS Chem. Biol. 14 (2019), pp. 1249–1259. doi:10.1021/acschembio.9b00214.
  • K.R. Brandvold, M.E. Steffey, C.C. Fox, and M.B. Soellner, Development of a highly selective c-Src kinase inhibitor, ACS Chem. Biol. 7 (2012), pp. 1393–1398. doi:10.1021/cb300172e.
  • M.I. Davis, J.P. Hunt, S. Herrgard, P. Ciceri, L.M. Wodicka, G. Pallares, M. Hocker, D.K. Treiber, and P.P. Zarrinkar, Comprehensive analysis of kinase inhibitor selectivity, Nat. Biotechnol. 29 (2011), pp. 1046–1051. doi:10.1038/nbt.1990.
  • S. Genheden and U. Ryde, The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities, Expert. Opin. Drug Discov. 10 (2015), pp. 449–461. doi:10.1517/17460441.2015.1032936.
  • ASINEX database, ASINEX Corporation, Winston-Salem, USA, 2019.
  • P. de Matos, R. Alcantara, A. Dekker, M. Ennis, J. Hastings, K. Haug, I. Spiteri, S. Turner, and C. Steinbeck, Chemical entities of biological interest: An update, Nucleic Acids Res. 38 (2010), pp. D249–D254. doi:10.1093/nar/gkp886.
  • Virtual screening workflow, Schrödinger, LLC, New York, 2018; software available at https://www.schrodinger.com/.
  • Discovery Studio, Dassault Systèmes BIOVIA, San Diego, 2016; software available at https://www.3ds.com/products-services/biovia/.
  • N. Miyano, T. Kinoshita, R. Nakai, Y. Kirii, K. Yokota, and T. Tada, Structural basis for the inhibitor recognition of human Lyn kinase domain, Bioorg. Med. Chem. Lett. 19 (2009), pp. 6557–6560. doi:10.1016/j.bmcl.2009.10.038.
  • LigPrep, Schrödinger, LLC, New York, 2018; software available at https://www.schrodinger.com/.
  • J.C. Shelley, A. Cholleti, L.L. Frye, J.R. Greenwood, M.R. Timlin, and M. Uchimaya, Epik: A software program for pKa prediction and protonation state generation for drug-like molecules, J. Comput. Aided. Mol. Des. 21 (2007), pp. 681–691. doi:10.1007/s10822-007-9133-z.
  • H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov, and P.E. Bourne, The protein data bank, Nucleic Acids Res. 28 (2000), pp. 235–242. doi:10.1093/nar/28.1.235.
  • Protein Preparation Wizard, Schrödinger, LLC, New York, 2018; software available at https://www.schrodinger.com/.
  • G. Madhavi Sastry, M. Adzhigirey, T. Day, R. Annabhimoju, and W. Sherman, Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments, J. Comput. Aided Mol. Des. 27 (2013), pp. 221–234. doi:10.1007/s10822-013-9644-8.
  • E. Harder, W. Damm, J. Maple, C. Wu, M. Reboul, J.Y. Xiang, L. Wang, D. Lupyan, M.K. Dahlgren, J.L. Knight, J.W. Kaus, D.S. Cerutti, G. Krilov, W.L. Jorgensen, R. Abel, and R.A. Friesner, OPLS3: A force field providing broad coverage of drug-like small molecules and proteins, J. Chem. Theory. Comput. 12 (2016), pp. 281–296. doi:10.1021/acs.jctc.5b00864.
  • R.A. Friesner, J.L. Banks, R.B. Murphy, T.A. Halgren, J.J. Klicic, D.T. Mainz, M.P. Repasky, E.H. Knoll, M. Shelley, J.K. Perry, D.E. Shaw, P. Francis, and P.S. Shenkin, Glide: A new approach for rapid, accurate docking and scoring. 1. method and assessment of docking accuracy, J. Med. Chem. 47 (2004), pp. 1739–1749. doi:10.1021/jm0306430.
  • B. Wright, K.A. Watson, L.J. McGuffin, J.A. Lovegrove, and J.M. Gibbins, GRID and docking analyses reveal a molecular basis for flavonoid inhibition of Src family kinase activity, J. Nutr. Biochem. 26 (2015), pp. 1156–1165. doi:10.1016/j.jnutbio.2015.05.004.
  • QikProp, Schrödinger, LLC, New York, 2018; software available at https://www.schrodinger.com/.
  • R. Kristam, V.J. Gillet, R.A. Lewis, and D. Thorner, Comparison of conformational analysis techniques to generate pharmacophore hypotheses using catalyst, J. Chem. Inf. Model. 45 (2005), pp. 461–476. doi:10.1021/ci049731z.
  • A. Smellie, S.L. Teig, and P. Towbin, Poling: Promoting conformational variation, J. Comp. Chem. 16 (1995), pp. 171–187. doi:10.1002/jcc.540160205.
  • A. Daina, O. Michielin, and V. Zoete, SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Sci. Rep. 7 (2017), pp. 42717. doi:10.1038/srep42717.
  • C.A. Lipinski, F. Lombardo, B.W. Dominy, and P.J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug Deliv. Rev. 46 (2001), pp. 3–26. doi:10.1016/S0169-409X(00)00129-0.
  • D.F. Veber, S.R. Johnson, H.Y. Cheng, B.R. Smith, K.W. Ward, and K.D. Kopple, Molecular properties that influence the oral bioavailability of drug candidates, J. Med. Chem. 45 (2002), pp. 2615–2623. doi:10.1021/jm020017n.
  • M. De Vrieze, P. Janssens, R. Szucs, J. Van der Eycken, and F. Lynen, In vitro prediction of human intestinal absorption and blood-brain barrier partitioning: Development of a lipid analog for micellar liquid chromatography, Anal. Bioanal. Chem. 407 (2015), pp. 7453–7466. doi:10.1007/s00216-015-8911-z.
  • V. Zoete, M.A. Cuendet, A. Grosdidier, and O. Michielin, SwissParam: A fast force field generation tool for small organic molecules, J. Comput. Chem. 32 (2011), pp. 235923–235968. doi:10.1002/jcc.21816.
  • J. Huang, S. Rauscher, G. Nawrocki, T. Ran, M. Feig, B.L. de Groot, H. Grubmuller, and A.D. MacKerell Jr., CHARMM36m: An improved force field for folded and intrinsically disordered proteins, Nat. Meth. 14 (2017), pp. 71–73. doi:10.1038/nmeth.4067.
  • P. Mark and L. Nilsson, Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K, Phys. Chem. A 105 (2001), pp. 9954–9960. doi:10.1021/jp003020w.
  • R. Kumari, R. Kumar, Open Source Drug Discovery, and A. Lynn, g_mmpbsa – A GROMACS tool for high-throughput MM-PBSA calculations, J. Chem. Inf. Model. 54 (2014), pp. 1951–1962. doi:10.1021/ci500020m
  • T. Zhu, S. Cao, P.C. Su, R. Patel, D. Shah, H.B. Chokshi, R. Szukala, M.E. Johnson, and K.E. Hevener, Hit identification and optimization in virtual screening: Practical recommendations based on a critical literature analysis, J. Med. Chem. 56 (2013), pp. 6560–6572. doi:10.1021/jm301916b.
  • Q. Li and S. Shah, Structure-based virtual screening, Meth. Mol. Biol. 1558 (2017), pp. 111–124.
  • M.A. Al-Sha’er and M.O. Taha, Application of docking-based comparative intermolecular contacts analysis to validate Hsp90alpha docking studies and subsequent in silico screening for inhibitors, J. Mol. Model. 18 (2012), pp. 4843–4863. doi:10.1007/s00894-012-1479-z.
  • S. Salentin, S. Schreiber, V.J. Haupt, M.F. Adasme, and M. Schroeder, PLIP: Fully automated protein-ligand interaction profiler, Nucleic Acids Res. 43 (2015), pp. W443–W447. doi:10.1093/nar/gkv315.
  • A.K. Ghose, V.N. Viswanadhan, and J.J. Wendoloski, A knowledge-based approach in Designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases, J. Comb. Chem. 1 (1999), pp. 55–68. doi:10.1021/cc9800071.
  • A.L. Hopkins, C.R. Groom, and A. Alex, Ligand efficiency: A useful metric for lead selection, Drug. Discov. Today 9 (2004), pp. 430–431. doi:10.1016/S1359-6446(04)03069-7.
  • C.H. Reynolds, S.D. Bembenek, and B.A. Tounge, The role of molecular size in ligand efficiency, Bioorg. Med. Chem. Lett. 17 (2007), pp. 4258–4261. doi:10.1016/j.bmcl.2007.05.038.
  • X. Xue, G. Bao, H.Q. Zhang, N.Y. Zhao, Y. Sun, Y. Zhang, and X.L. Wang, An application of fit quality to screen MDM2/p53 protein-protein interaction inhibitors, Molecules 23 (2018), pp. 3174. doi:10.3390/molecules23123174.
  • G.M. Keseru and G.M. Makara, The influence of lead discovery strategies on the properties of drug candidates, Nat. Rev. Drug. Discov. 8 (2009), pp. 203–212. doi:10.1038/nrd2796.
  • X.M. Chen, T. Lu, S. Lu, H.F. Li, H.L. Yuan, T. Ran, H.C. Liu, and Y.D. Chen, Structure-based and shape-complemented pharmacophore modeling for the discovery of novel checkpoint kinase 1 inhibitors, J. Mol. Model. 16 (2010), pp. 1195–1204. doi:10.1007/s00894-009-0630-y.
  • W. Tai, T. Lu, H. Yuan, F. Wang, H. Liu, S. Lu, Y. Leng, W. Zhang, Y. Jiang, and Y. Chen, Pharmacophore modeling and virtual screening studies to identify new c-Met inhibitors, J. Mol. Model. 18 (2012), pp. 3087–3100. doi:10.1007/s00894-011-1328-5.
  • X. Liu, D. Shi, S. Zhou, H. Liu, H. Liu, and X. Yao, Molecular dynamics simulations and novel drug discovery, Expert. Opin. Drug. Discov. 13 (2018), pp. 23–37. doi:10.1080/17460441.2018.1403419.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.