296
Views
41
CrossRef citations to date
0
Altmetric
Research Article

Chemometric methods in antimalarial drug design from 1,2,4,5-tetraoxanes analogues

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 677-695 | Received 28 Jul 2020, Accepted 28 Jul 2020, Published online: 28 Aug 2020

References

  • S. Kho, B. Andries, J.R. Poespoprodjo, R.J. Commons, P.A.I. Shanti, E. Kenangalem, N.M. Douglas, J.A. Simpson, P. Sugiarto, N.M. Anstey, and R.N. Price, High risk of Plasmodium vivax malaria following splenectomy in Papua, Indonesia, Clin. Infect. Dis. 68 (2019), pp. 51–60. doi:10.1093/cid/ciy403.
  • A.K. Jager, Is Traditional Medicine Better off 25 Years Later? J. Ethnopharmacol. 100 (2005). pp. 3–4.
  • J. Talapko, I. Škrlec, T. Alebić, M. Jukić, and A. Včev, Malaria: The past and the present, Microorganisms 7 (2019), pp. 179. doi:10.3390/microorganisms7060179.
  • World Health Organization, World Health Organization (WHO) | Neglected Tropical Diseases, WHO/World Health Organization, Geneva, Switzerland, 2020.
  • J.Q. Araújo, J.W.D.M. Carneiro, M.T. de Araujo, F.H.A. Leite, and A.G. Taranto, Interaction between artemisinin and heme. A density functional theory study of structures and interaction energies, Bioorg. Med. Chem. 16 (2008), pp. 5021–5029. doi:10.1016/j.bmc.2008.03.033.
  • F.H.A. Leite, J.W. De Mesquita Carneiro, M.T. De Araujo, M. Comar, and A.G. Taranto, Docking between natural peroxides and heme group by parametric method 6, Int. J. Quant. Chem. 112 (2012), pp. 3390–3397. doi:10.1002/qua.24247.
  • J.P. Barbosa, J.E.V. Ferreira, A.F. Figueiredo, R.C.O. Almeida, O.P.P. Silva, J.R.C. Carvalho, M.D.G.G. Cristino, J. Ciríaco-Pinheiro, J.L.F. Vieira, and R.T.A. Serra, Molecular modeling and chemometric study of anticancer derivatives of artemisinin, J. Serbian Chem. Soc. 76 (2011), pp. 1263–1282. doi:10.2298/JSC111227111B.
  • S. Sarpong-Kumankomah and J. Gailer, Identification of a haptoglobin-hemoglobin complex in human blood plasma, J. Inorg. Biochem. 201 (2019), pp. 110802. doi:10.1016/j.jinorgbio.2019.110802.
  • Y. Dong, H. Matile, J. Chollet, R. Kaminsky, J.K. Wood, and J.L. Vennerstrom, Synthesis and antimalarial activity of 11 dispiro-1,2,4,5-tetraoxane analogues of WR 148999. 7,8,15,16-tetraoxadispiro[5.2.5.2]hexadecanes substituted at the 1 and 10 positions with unsaturated and polar functional groups, J. Med. Chem. 42 (1999), pp. 1477–1480. doi:10.1021/jm980698f.
  • A.K. Bhattacharjee, K.A. Carvalho, D. Opsenica, and B.A. Šolaja, Structure-activity relationship study of steroidal 1,2,4,5-tetraoxane animalarials using computational procedures, J. Serbian Chem. Soc. 70 (2005), pp. 329–345. doi:10.2298/JSC0503329B.
  • J.M. Romero, N.L. Jorge, M.E. Gómez-Vara, A.H. Jubert, and E.A. Castro, Spectroscopic study of the dispiro-1,2,4,5-tetroxane (cyclohexanone diperoxide), Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 70 (2008), pp. 775–779. doi:10.1016/j.saa.2007.09.018.
  • M. Opsenica, V. Yu, N. It, and K. Wilbur, (12) United States Patent, 2 (2005).
  • C. Lee, W. Yang, and R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 37 (1988), pp. 785–789. doi:10.1103/PhysRevB.37.785.
  • J.R.H. Tame and B. Vallone, The structures of deoxy human haemoglobin and the mutant Hb Tyrα42His at 120 K, Acta Crystallogr. Sect. D Biol. Crystallogr. 56 (2000), pp. 805–811. doi:10.1107/S0907444900006387.
  • C.B.F. Andersen, M. Torvund-Jensen, M.J. Nielsen, C.L.P. De Oliveira, H.P. Hersleth, N.H. Andersen, J.S. Pedersen, G.R. Andersen, and S.K. Moestrup, Structure of the haptoglobinhaemoglobin complex, Nature 489 (2012), pp. 456–459. doi:10.1038/nature11369.
  • M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li,M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, and D.J. Fox, Gaussian 16 Revision 16.A.03 Inc., Wallingford CT, 2016.
  • J.G. Hill, Gaussian basis sets for molecular applications, Int. J. Quantum Chem. 113 (2013), pp. 21–34. doi:10.1002/qua.24355.
  • B. Nagy and F. Jensen, Basis Sets in Quantum Chemistry, John Wiley & Sons, Ltd, New York, United States, 2017, pp. 93–149.
  • F.S. Alves, J.D.A. Rodrigues Do Rego, M.L. Da Costa, L.F. Lobato Da Silva, R.A. Da Costa, J.N. Cruz, and D.D.S.B. Brasil, Spectroscopic methods and in silico analyses using density functional theory to characterize and identify piperine alkaloid crystals isolated from pepper (Piper nigrum L.), J. Biomol. Struct. Dyn. 37 (2019), pp. 1–8.
  • J.E.V. Ferreira, A.F. Figueiredo, J.P. Barbosa, M.G.G. Cristino, W.J.C. MacEdo, O.P.P. Silva, B.V. Malheiros, R.T.A. Serra, and J. Ciriaco-Pinheiro, A study of new antimalarial artemisinins through molecular modeling and multivariate analysis, J. Serbian Chem. Soc. 75 (2010), pp. 1533–1548. doi:10.2298/JSC100126124F.
  • V.V. Vale, J.N. Cruz, G.M.R. Viana, M.M. Póvoa, D.D.S.B. Brasil, and M.F. Dolabela, Naphthoquinones isolated from Eleutherine plicata herb: In vitro antimalarial activity and molecular modeling to investigate their binding modes, Med. Chem. Res. 29 (2020), pp. 487–494. doi:10.1007/s00044-019-02498-z.
  • C.B.R. Dos Santos, J.B. Vieira, A. Da Silva Formigosa, E.V.M. Da Costa, M.T. Pinheiro, J.O. Da Silva, W.J. Da Cruz Macedo, and J.C.T. Carvalho, Validation of computational methods applied in molecular modeling of artemisinin with antimalarial activity, J. Comput. Theor. Nanosci. 11 (2014), pp. 553–561. doi:10.1166/jctn.2014.3394.
  • K.J. McCullough, J.K. Wood, A.K. Bhattacharjee, Y. Dong, D.E. Kyle, W.K. Milhous, and J.L. Vennerstrom, Methyl-substituted dispiro-1,2,4,5-tetraoxanes: Correlations of structural studies with antimalarial activity, J. Med. Chem. 43 (2000), pp. 1246–1249.
  • I.V. Tetko, J. Gasteiger, R. Todeschini, A. Mauri, D. Livingstone, P. Ertl, V.A. Palyulin, E.V. Radchenko, N.S. Zefirov, A.S. Makarenko, V.Y. Tanchuk, and V.V. Prokopenko, Virtual computational chemistry laboratory - Design and description, J. Comput. Aided. Mol. Des. 19 (2005), pp. 453–463. doi:10.1007/s10822-005-8694-y.
  • M. Froimowitz, HyperChem: A software package for computational chemistry and molecular modeling, Biotechniques 14 (1993), pp. 1010–1013.
  • W.J.C. Macêdo, J.S. Costa, L.B. Federico, J.V. Cruz, S.S. Carvalho, R.S. Ramos, D.D. Wanderley, C.H.T.P. Silva, and C.B.R. Santos, A MLR and ADME/Tox study of new dihydroartemisinin compounds with antimalarial activity, J. Comput. Theor. Nanosci. 15 (2018), pp. 1785–1794. doi:10.1166/jctn.2018.7310.
  • C. Dos Santos, C. Lobato, F. Braga, J. Costa, H. Favacho, J. Carvalho, W. Macedo, D. Brasil, C. da Silva, and L. da Silva Hage-melim, Rational design of antimalarial drugs using molecular modeling and statistical analysis, Curr. Pharm. Des. 21 (2015), pp. 4112–4127. doi:10.2174/1381612821666150528121423.
  • W.J.C. Macêdo, F.S. Braga, C.F. Santos, J. Da Silva Costa, G.S. De Melo, M.N. De Mello, D.S. Sousa, J.C.T. Carvalho, D. Do Socorro Barros Brasil, and C.B.R. Dos Santos, Antimalarial artemisinins derivatives study: Molecular modeling and multivariate analysis (PCA, HCA, KNN, SIMCA and SDA), J. Comput. Theor. Nanosci. 12 (2015), pp. 3443–3458. doi:10.1166/jctn.2015.4138.
  • C.M. Breneman and K.B. Wiberg, Determining atom‐centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis, J. Comput. Chem. 11 (1990), pp. 361–373. doi:10.1002/jcc.540110311.
  • U.C. Singh and P.A. Kollman, An approach to computing electrostatic charges for molecules, J. Comput. Chem. 5 (1984), pp. 129–145. doi:10.1002/jcc.540050204.
  • E. Estrada and E. Molina, Novel local (fragment-based) topological molecular descriptors for QSPR/QSAR and molecular design, J. Mol. Graph. Model. 20 (2001), pp. 54–64. doi:10.1016/S1093-3263(01)00100-0.
  • M.D.G.G. Cristino, C.C.F. De Meneses, M.M. Soeiro, J.E.V. Ferreira, A.F. De Figueiredo, J.P. Barbosa, R.C.O. De Almeida, J.C. Pinheiro, and A.D.L.R. Pinheiro, Computational modeling of antimalarial 10-substituted deoxoartemisinins, J. Theor. Comput. Chem. 11 (2012), pp. 241–263. doi:10.1142/S0219633612500162.
  • C.B.R. Santos, J.B. Vieira, C.C. Lobato, L.I.S. Hage-Melim, R.N.P. Souto, C.S. Lima, E.V.M. Costa, D.S.B. Brasil, W.J.C. Macêdo, and J.C.T. Carvalho, A SAR and QSAR study of new artemisinin compounds with antimalarial activity, Molecules 19 (2014), pp. 367–399. doi:10.3390/molecules19010367.
  • J. Neves Cruz, K.S. da Costa, T.A.A. de Carvalho, and N.A.N. de Alencar, Measuring the structural impact of mutations on cytochrome P450 21A2, the major steroid 21-hydroxylase related to congenital adrenal hyperplasia, J. Biomol. Struct. Dyn. 38 (2020), pp. 1425–1434. doi:10.1080/07391102.2019.1607560.
  • J.R. José, J.E.V. Ferreira, J.P. Barbosa, M. Da Silva Lobato, C.C.F. Meneses, M.M. Soeiro, M. De Souza Farias, R.C.O. De Almeida, K.C. Ventura, J.C. Pinheiro, A. De Lourdes, and R. Pinheiro, Computational modeling of artemisinins with antileishmanial activity, J. Comput. Theor. Nanosci. 8 (2011), pp. 2193–2203. doi:10.1166/jctn.2011.1943.
  • R.D. Clark, P.R.N. Wolohan, E.E. Hodgkin, J.H. Kelly, and N.L. Sussman, Modelling in vitro hepatotoxicity using molecular interaction fields and SIMCA, J. Molec. Graph. Model. 22 (2004), pp. 487–497. doi:10.1016/j.jmgm.2004.03.009.
  • B.R. Kowalski and C.F. Bender, Pattern recognition.1 A powerful approach to interpreting chemical data, J. Am. Chem. Soc. 94 (1972), pp. 5632–5639. doi:10.1021/ja00771a016.
  • O. Trott and A.J. Olson, AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem. 31 (2009), pp. NA–NA. doi:10.1002/jcc.21334.
  • J. Neves Cruz, M. Santana de Oliveira, S. Gomes Silva, A. Pedro da Silva Souza Filho, D. Santiago Pereira, A.H. Lima E Lima, and E.H. de Aguiar Andrade, Insight into the interaction mechanism of nicotine, NNK, and NNN with cytochrome P450 2A13 based on molecular dynamics simulation, J. Chem. Inf. Model. 60 (2020), pp. 766–776. doi:10.1021/acs.jcim.9b00741.
  • S. Dallakyan and A.J. Olson, Small-molecule library screening by docking with PyRx, Meth. Mol. Biol. 1263 (2015), pp. 243–250.
  • Q.C. Nguyen, Y.S. Ong, H. Soh, and J.L. Kuo, Multiscale approach to explore the potential energy surface of water clusters (H2O)n n ≤ 8, J. Phys. Chem. A 112 (2008), pp. 6257–6261. doi:10.1021/jp802118j.
  • G.M. Morris, H. Ruth, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, and A.J. Olson, Software news and updates AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility, J. Comput. Chem. 30 (2009), pp. 2785–2791. doi:10.1002/jcc.21256.
  • G.M. Morris, D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R.K. Belew, and A.J. Olson, Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function, J. Comput. Chem. 19 (1998), pp. 1639–1662. doi:10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B.
  • K.S. Da Costa, J.M. Galúcio, C.H.S. Da Costa, A.R. Santana, V. Dos Santos Carvalho, L.D. Do Nascimento, A.H. Lima E Lima, J. Neves Cruz, C.N. Alves, and J. Lameira, Exploring the potentiality of natural products from essential oils as inhibitors of odorant-binding proteins: A structure- and ligand-based virtual screening approach to find novel mosquito repellents, ACS Omega 4 (2019), pp. 22475–22486. doi:10.1021/acsomega.9b03157.
  • L.L.C. Schrödinger, The PyMOL Molecular Graphics System, Version{\textasciitilde}1.8, New York, 2015.
  • J. Rodríguez-Guerra Pedregal and J.D. Maréchal, PyChimera: Use UCSF Chimera modules in any Python 2.7 project, Bioinformatics 34 (2018), pp. 1784–1785. doi:10.1093/bioinformatics/bty021.
  • R.G. Pearson, Absolute electronegativity and absolute hardness of lewis acids and bases, J. Am. Chem. Soc. 107 (1985), pp. 6801–6806. doi:10.1021/ja00310a009.
  • R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Vol. 11, Methods and Principles in Medicinal Chemistry Wiley, New York, 2000.
  • J. Souza, R.H. De Almeida Santos, M.M.C. Ferreira, F.A. Molfetta, A.J. Camargo, K.M. Honório, and A.B.F. Da Silva, A quantum chemical and statistical study of flavonoid compounds (flavones) with anti-HIV activity, Eur. J. Med. Chem. 38 (2003), pp. 929–938. doi:10.1016/j.ejmech.2003.06.001.
  • A.F. Figueiredo, J.E.V. Ferreira, J.P. Barbosa, W.J. Da Cruz MacEdo, M. Da Gloria Gomes Cristino, M. Da Silva Lobato, J.C. Pinheiro, and R.T.A. Serra, A computational study on antimalarial dispiro-1,2,4-trioxolanes, J. Comput. Theor. Nanosci. 8 (2011), pp. 1847–1856. doi:10.1166/jctn.2011.1892.
  • S. Tonmunphean, A. Wijitkosoom, and Y. Tantirungrotechai, Influence of stereoisomer of dispiro-1,2,4,5-tetraoxanes on their binding mode with heme and on antimalarial activity: Molecular docking studies, Bioorg. Med. Chem. 12 (2004), pp. 2005–2012. doi:10.1016/j.bmc.2004.03.003.
  • S. Tonmunphean, V. Parasuk, and S. Kokpol, Automated calculation of docking of artemisinin to heme, J. Mol. Model. 7 (2001), pp. 26–33. doi:10.1007/s008940100013.
  • S. Tonmunphean, V. Parasuk, and S. Kokpol, QSAR study of antimalarial activities and artemisinin-heme binding properties obtained from docking calculations, Quant. Struct. Relat. 19 (2000), pp. 475–483. doi:10.1002/1521-3838(200012)19:5<475::AID-QSAR475>3.0.CO;2-3.
  • S. Tonmunphean, V. Parasuk, and S. Kokpol, Effective discrimination of antimalarial potency of artemisinin compounds based on quantum chemical calculations of their reaction mechanism, Bioorg. Med. Chem. 14 (2006), pp. 2082–2088. doi:10.1016/j.bmc.2005.07.003.
  • R.A. Costa, J.N. Cruz, F.C.A. Nascimento, S.G. Silva, S.O. Silva, M.C. Martelli, S.M.L. Carvalho, C.B.R. Santos, A.M.J.C. Neto, and D.S.B. Brasil, Studies of NMR, molecular docking, and molecular dynamics simulation of new promising inhibitors of cruzaine from the parasite Trypanosoma cruzi, Med. Chem. Res. 28 (2019), pp. 246–259. doi:10.1007/s00044-018-2280-z.
  • K.L.B. Dos Santos, J.N. Cruz, L.B. Silva, R.S. Ramos, M.F.A. Neto, C.C. Lobato, S.S.B. Ota, F.H.A. Leite, R.S. Borges, C.H.T.P. da Silva, J.M. Campos, and C.B.R. Santos, Identification of novel chemical entities for adenosine receptor type 2a using molecular modeling approaches, Molecules 25 (2020), pp. 1245. doi:10.3390/molecules25051245.
  • V.D.S. Pinto, J.S.C. Araújo, R.C. Silva, G.V. da Costa, J.N. Cruz, M.F.D.A. Neto, J.M. Campos, C.B.R. Santos, F.H.A. Leite, and M.C.S. Junior, In silico study to identify new antituberculosis molecules from natural sources by hierarchical virtual screening and molecular dynamics simulations, Pharmaceuticals 12 (2019), pp. 36. doi:10.3390/ph12010036.
  • R.S. Ramos, W.J.C. Macêdo, J.S. Costa, C.H.T.D.P. da Silva, J.M.C. Rosa, J.N. da Cruz, M.S. de Oliveira, E.H. de Aguiar Andrade, R.B.L. E Silva, R.N.P. Souto, and C.B.R. Santos, Potential inhibitors of the enzyme acetylcholinesterase and juvenile hormone with insecticidal activity: Study of the binding mode via docking and molecular dynamics simulations, J. Biomol. Struct. Dyn. (2019), pp. 1–23. doi:10.1080/07391102.2019.1688192.
  • C.B.R. Santos, K.L.B. Santos, J.N. Cruz, F.H.A. Leite, R.S. Borges, C.A. Taft, J.M. Campos, and C.H.T.P. Silva, Molecular modeling approaches of selective adenosine receptor type 2A agonists as potential anti-inflammatory drugs, J. Biomol. Struct. Dyn. (2020). doi:10.1080/07391102.2020.1761878.
  • G.V. da Costa, E.F.B. Ferreira, R.D.S. Ramos, V. da Silva, E.M.F. de Sá, A.K.P. da Silva, C.M. Lobato, R.N.P. Souto, C.H.T.D.P. da Silva, L.B. Federico, J.M.C. Rosa, and C.B.R. Dos Santos, Hierarchical virtual screening of potential insecticides inhibitors of acetylcholinesterase and juvenile hormone from temephos, Pharmaceuticals 12 (2019), pp. 61. doi:10.3390/ph12020061.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.