153
Views
2
CrossRef citations to date
0
Altmetric
Research Article

In silico guided designing of 4-(1H-benzo[d]imidazol-2-yl)phenol-based mutual-prodrugs of NSAIDs: synthesis and biological evaluation

, &
Pages 761-784 | Received 24 Jun 2020, Accepted 11 Aug 2020, Published online: 01 Sep 2020

References

  • L. Laine, Proton pump inhibitor co-therapy with nonsteroidal anti-inflammatory drugs–nice or necessary?, Rev. Gastroenterol. Disord. 4 (2004), pp. S33–41.
  • J. Scheiman, Nonsteroidal anti-inflammatory drugs, aspirin, and gastrointestinal prophylaxis: An ounce of prevention, Rev. Gastroenterol. Disord. 5 (2005), pp. 39–49.
  • W. Beck, H. Schneider, K. Dietzel, B. Nuernberg, and K. Brune, Gastrointestinal ulcerations induced by anti-inflammatory drugs in rats, Arch. Toxicol. 64 (1990), pp. 210–217. doi:10.1007/BF02010727.
  • M. Sinha, L. Gautam, P.K. Shukla, P. Kaur, S. Sharma, and T.P. Singh, Current perspectives in NSAID-induced gastropathy, Mediators Inflamm. 2013 (2013), pp. 1–11. doi:10.1155/2013/258209.
  • M. Fine, Quantifying the impact of NSAID-associated adverse events, Am. J. Manag. Care 19 (2013), pp. s267–72.
  • D.W. Gilroy and P.R. Colville-Nash, New insights into the role of COX 2 in inflammation, J. Mol. Med. 78 (2000), pp. 121–129. doi:10.1007/s001090000094.
  • D. Derle, K. Gujar, and B. Sagar, Adverse effects associated with the use of nonsteroidal antiinflammatory drugs: An overview, Indian J. Pharm. Sci. 68 (2006), pp. 409–414. doi:10.4103/0250-474X.27809.
  • G. Singh and G. Triadafilopoulos, Epidemiology of NSAID induced gastrointestinal complications, J. Rheumatol. Suppl. 56 (1999), pp. 18–24.
  • J.K. Gierse, J.J. McDonald, S.D. Hauser, S.H. Rangwala, C.M. Koboldt, and K. Seibert, A single amino acid difference between cyclooxygenase-1 (COX-1) and− 2 (COX-2) reverses the selectivity of COX-2 specific inhibitors, J. Biol. Chem. 271 (1996), pp. 15810–15814. doi:10.1074/jbc.271.26.15810.
  • R.G. Kurumbail, A.M. Stevens, J.K. Gierse, J.J. McDonald, R.A. Stegeman, J.Y. Pak, D. Gildehaus, T.D. Penning, K. Seibert, and P.C. Isakson, Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents, Nature 384 (1996), pp. 644–648. doi:10.1038/384644a0.
  • J. Vane and R. Botting, New insights into the mode of action of anti-inflammatory drugs, Inflamm. Res. 44 (1995), pp. 1–10. doi:10.1007/BF01630479.
  • M. Arora, S. Choudhary, P.K. Singh, B. Sapra, and O. Silakari, Structural investigation on the selective COX-2 inhibitors mediated cardiotoxicity: A review, Life Sci. 251 (2020), pp. 117631. doi:10.1016/j.lfs.2020.117631.
  • L. Crisan, A. Borota, A. Bora, and L. Pacureanu, Diarylthiazole and diarylimidazole selective COX-1 inhibitor analysis through pharmacophore modeling, virtual screening, and DFT-based approaches, Struct. Chem. 30 (2019), pp. 2311–2326. doi:10.1007/s11224-019-01414-w.
  • Y.G.S. Ibrahim, M.F. Mahdi, T.N. Omar, O. Auday, and N. Sabah, Synthesis, characterization and preliminary anti-inflammatory evaluation of 5-benzylidine thiazolidine-4-one derivatives, J. Pharm. Sci. Res. 11 (2019), pp. 1287–1290.
  • S.T. Hassib, G.S. Hassan, A.A. El-Zaher, M.A. Fouad, O.A.A. El-Ghafar, and E.A. Taha, Synthesis and biological evaluation of new prodrugs of etodolac and tolfenamic acid with reduced ulcerogenic potential, Eur. J. Pharm. Sci. 140 (2019), pp. 105101. doi:10.1016/j.ejps.2019.105101.
  • T. Elsaman, O.A. Aldeeb, T. Aboul-Fadl, and E.I. Hamedelneil, Synthesis, characterization and pharmacological evaluation of certain enzymatically cleavable NSAIDs amide prodrugs, Bioorg. Chem. 70 (2017), pp. 144–152. doi:10.1016/j.bioorg.2016.12.005.
  • K. Beaumont, R. Webster, I. Gardner, and K. Dack, Design of ester prodrugs to enhance oral absorption of poorly permeable compounds: Challenges to the discovery scientist, Curr. Drug Metab. 4 (2003), pp. 461–485. doi:10.2174/1389200033489253.
  • K. Shah, S.K. Shrivastava, and P. Mishra, Evaluation of mefenamic acid mutual prodrugs, Med. Chem. Res. 22 (2013), pp. 70–77. doi:10.1007/s00044-012-0016-z.
  • S. Demir, M. Yilmaz, M. Koseoglu, N. Akalin, D. Aslan, and A. Aydin, Role of free radicals in peptic ulcer and gastritis, Turk. J. Gastroenterol. 14 (2003), pp. 39–43.
  • M. Repetto and S. Llesuy, Antioxidant properties of natural compounds used in popular medicine for gastric ulcers, Braz. J. Med. Biol. Res. 35 (2002), pp. 523–534. doi:10.1590/S0100-879X2002000500003.
  • Y. Bansal and O. Silakari, The therapeutic journey of benzimidazoles: A review, Bioorg. Med. Chem. 20 (2012), pp. 6208–6236. doi:10.1016/j.bmc.2012.09.013.
  • P.K. Halen, K.K. Chagti, R. Giridhar, and M.R. Yadav, Substituted aminoalcohol ester analogs of indomethacin with reduced toxic effects, Med. Chem. Res. 16 (2007), pp. 101–111. doi:10.1007/s00044-007-9013-z.
  • S. Choudhary and O. Silakari, hCES1 and hCES2 mediated activation of epalrestat-antioxidant mutual prodrugs: Unwinding the hydrolytic mechanism using in silico approaches, J. Mol. Graph. Model. 91 (2019), pp. 148–163. doi:10.1016/j.jmgm.2019.06.012.
  • M. Kaur, M.S. Bahia, and O. Silakari, Exploring the role of water molecules for docking and receptor guided 3D-QSAR analysis of naphthyridine derivatives as spleen tyrosine kinase (Syk) inhibitors, J. Chem. Inf. Model. 52 (2012), pp. 2619–2630. doi:10.1021/ci300227f.
  • M. Kaur, P.K. Singh, M. Singh, R. Bahadur, and O. Silakari, Molecular dynamics and integrated pharmacophore-based identification of dual JAK3/PI3Kδ inhibitors, Mol. Divers. 22 (2018), pp. 95–112. doi:10.1007/s11030-017-9794-z.
  • M. Kaur, M. Singh, and O. Silakari, Oxindole-based SYK and JAK3 dual inhibitors for rheumatoid arthritis: Designing, synthesis and biological evaluation, Future Med. Chem. 9 (2017), pp. 1193–1211. doi:10.4155/fmc-2017-0037.
  • S. Kapil, P. Singh, A. Kashyap, and O. Silakari, Structure based designing of benzimidazole/benzoxazole derivatives as anti-leishmanial agents, SAR QSAR Environ. Res. 30 (2019), pp. 919–933. doi:10.1080/1062936X.2019.1684357.
  • P.K. Singh and O. Silakari, Molecular dynamics guided development of indole based dual inhibitors of EGFR (T790M) and c-MET, Bioorg. Chem. 79 (2018), pp. 163–170. doi:10.1016/j.bioorg.2018.04.001.
  • P. Chattaraj and A. Poddar, Molecular reactivity in the ground and excited electronic states through density-dependent local and global reactivity parameters, J. Phys. Chem. A 103 (1999), pp. 8691–8699.
  • Chemical Computing Group Inc., Molecular Operating Environment (MOE), Chemical Computing Group Inc. 1010 Sherbooke St. West, Suite# 910, Montreal, 2016.
  • J. Dong, -N.-N. Wang, Z.-J. Yao, L. Zhang, Y. Cheng, D. Ouyang, A.-P. Lu, and D.-S. Cao, ADMETlab: A platform for systematic ADMET evaluation based on a comprehensively collected ADMET database, J. Cheminf. 10 (2018), pp. 29. doi:10.1186/s13321-018-0283-x.
  • L. Schrödinger, QikProp, version 3.5, New York, NY, 2012.
  • C.A. Winter, E.A. Risley, and G.W. Nuss, Carrageenin-induced edema in hind paw of the rat as an assay for antiinflammatory drugs, Proc. Soc. Exp. Biol. Med. 111 (1962), pp. 544–547. doi:10.3181/00379727-111-27849.
  • S. Sawraj, T.R. Bhardawaj, and P.D. Sharma, Design, synthesis and evaluation of novel indomethacin–flavonoid mutual prodrugs as safer NSAIDs, Med. Chem. Res. 20 (2011), pp. 687–694. doi:10.1007/s00044-010-9363-9.
  • P.C. Sharma, S. Yadav, R. Pahwa, D. Kaushik, and S. Jain, Synthesis and evaluation of novel prodrugs of naproxen, Med. Chem. Res. 20 (2011), pp. 648–655. doi:10.1007/s00044-010-9364-8.
  • B.P. Bandgar, R.J. Sarangdhar, F.A. Ahamed, and S. Viswakarma, Synthesis, characterization, and biological evaluation of novel diclofenac prodrugs, J. Med. Chem. 54 (2011), pp. 1202–1210. doi:10.1021/jm101095e.
  • F. Kazunaga, K. Osamu, H. Morihide, M. Noriyuki, O. Seiichi, and H. Yoshikazu, A method for evaluating analgesic agents in rats, J. Pharmacol. Tox. Met. 4 (1980), pp. 251–259. doi:10.1016/0160-5402(80)90017-0.
  • V. Cioli, S. Putzolu, V. Rossi, P.S. Barcellona, and C. Corradino, The role of direct tissue contact in the production of gastrointestinal ulcers by anti-inflammatory drugs in rats, Toxicol. Appl. Pharmacol. 50 (1979), pp. 283–289. doi:10.1016/0041-008X(79)90153-4.
  • S. Kulkarni and R. Goel, Gastric antiulcer activity of UL-409 in rats, Indian J. Exp. Biol. 34 (1996), pp. 683–688.
  • E. Beutler, Improved method for the determination of blood glutathione, J. Lab. Clin. Med. 61 (1963), pp. 882–888.
  • H. Aebi, Catalase, in Methods of Enzymatic Analysis, Elsevier, Cambridge, Massachusetts, United States, 1974, pp. 673–684.
  • H. Ohkawa, N. Ohishi, and K. Yagi, Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction, Anal. Biochem. 95 (1979), pp. 351–358. doi:10.1016/0003-2697(79)90738-3.
  • E.V. Pindel, N.Y. Kedishvili, T.L. Abraham, M.R. Brzezinski, J. Zhang, R.A. Dean, and W.F. Bosron, Purification and cloning of a broad substrate specificity human liver carboxylesterase that catalyzes the hydrolysis of cocaine and heroin, J. Biol. Chem. 272 (1997), pp. 14769–14775. doi:10.1074/jbc.272.23.14769.
  • G. Vistoli, A. Pedretti, A. Mazzolari, and B. Testa, In silico prediction of human carboxylesterase-1 (hCES1) metabolism combining docking analyses and MD simulations, Bioorg. Med. Chem. 18 (2010), pp. 320–329. doi:10.1016/j.bmc.2009.10.052.
  • A. Verloop, The sterimol approach: Further development of the method and new applications, in Pesticide Chemistry: Human Welfare and Environment, P. Doyle and T. Fujita, eds., Elsevier, Oxford, United Kingdom, 1983, pp. 339–344.
  • M.R. Meyer, A. Schütz, and H.H. Maurer, Contribution of human esterases to the metabolism of selected drugs of abuse, Toxicol. Lett. 232 (2015), pp. 159–166. doi:10.1016/j.toxlet.2014.10.026.
  • C. Yu, P. Guo, C. Jin, and W. Su, The synthesis of benzimidazole derivatives in the absence of solvent and catalyst, J. Chem. Res. 2009 (2009), pp. 333–336. doi:10.3184/030823409X447763.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.