1,696
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Exploring RdRp–remdesivir interactions to screen RdRp inhibitors for the management of novel coronavirus 2019-nCoV

, &
Pages 857-867 | Received 25 Jun 2020, Accepted 14 Sep 2020, Published online: 26 Oct 2020

References

  • Y. Jin, H. Yang, W. Ji, W. Wu, S. Chen, W. Zhang, and G. Duan, Virology, epidemiology, pathogenesis, and control of COVID-19, Viruses 12 (2020), pp. 372.
  • C. Wu, Y. Liu, Y. Yang, P. Zhang, W. Zhong, Y. Wang, Q. Wang, Y. Xu, M. Li, and X. Li, Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, Acta Pharm. Sin. B 10 (2020), pp. 766–788.
  • C. Harrison, Coronavirus puts drug repurposing on the fast track, Nature Biotechnol. 38 (2020), pp. 379–381.
  • M.P. Lythgoe and P. Middleton, Ongoing clinical trials for the management of the COVID-19 pandemic, Trends Pharmacol. Sci. 41 (2020), pp. 363–382.
  • I.F.-N. Hung, K.-C. Lung, E.Y.-K. Tso, R. Liu, T.W.-H. Chung, M.-Y. Chu, -Y.-Y. Ng, J. Lo, J. Chan, and A.R. Tam, Triple combination of interferon beta-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: An open-label, randomised, phase 2 trial, Lancet 395 (2020), pp. 1695–1704.
  • M. Costanzo, M.A.R. De Giglio, and G.N. Roviello, SARS-CoV-2: Recent reports on antiviral therapies based on Lopinavir/Ritonavir, Darunavir/Umifenovir, Hydroxychloroquine, Remdesivir, Favipiravir and other drugs for the treatment of the new coronavirus, Curr. Med. Chem. 27 (2020), pp. 4536–4541.
  • P. Zhai, Y. Ding, X. Wu, J. Long, Y. Zhong, and Y. Li, The epidemiology, diagnosis and treatment of COVID-19, Int. J. Antimicrob. 55 (2020), pp. 105955.
  • P.I. Andersen, A. Ianevski, H. Lysvand, A. Vitkauskiene, V. Oksenych, M. Bjørås, K. Telling, I. Lutsar, U. Dampis, and Y. Irie, Discovery and development of safe-in-man broad-spectrum antiviral agents, Int. J. Infect. Dis. 93 (2020), pp. 268–276.
  • R. Islam, M.R. Parves, A.S. Paul, N. Uddin, M.S. Rahman, A.A. Mamun, M.N. Hossain, M.A. Ali, and M.A. Halim, A molecular modeling approach to identify effective antiviral phytochemicals against the main protease of SARS-CoV-2, J. Biomol. Struct. Dyn. (2020), pp. 1–12. doi:10.1080/07391102.2020.1761883.
  • V. Kumar and K. Roy, Development of a simple, interpretable and easily transferable QSAR model for quick screening antiviral databases in search of novel 3C-like protease (3CLpro) enzyme inhibitors against SARS-CoV diseases, SAR QSAR Environ. Res. 31 (2020), pp. 511–526.
  • S.A. Amin, K. Ghosh, S. Gayen, and T. Jha, Chemical-informatics approach to COVID-19 drug discovery: Monte Carlo based QSAR, virtual screening and molecular docking study of some in-house molecules as papain-like protease (PLpro) inhibitors, J. Biomol. Struct. Dyn. (2020), pp. 1–10. doi:10.1080/07391102.2020.1780946.
  • Y. Gao, L. Yan, Y. Huang, F. Liu, Y. Zhao, L. Cao, T. Wang, Q. Sun, Z. Ming, and L. Zhang, Structure of RNA-dependent RNA polymerase from 2019-nCoV, a major antiviral drug target, BioRxiv (2020). doi: 10.1101/2020.03.16.993386.
  • Y.-C. Cao, Q.-X. Deng, and S.-X. Dai, Remdesivir for severe acute respiratory syndrome coronavirus 2 causing COVID-19: An evaluation of the evidence, Travel Med. Infect. Dis. 35 (2020), pp. 101647.
  • A.A. Elfiky, SARS-CoV-2 RNA dependent RNA polymerase (RdRp) targeting: An in silico perspective, J. Biomol. Struct. Dyn. (2020), pp. 1–9. doi:10.1080/07391102.2020.176188.
  • K.-T. Choy, A.Y.-L. Wong, P. Kaewpreedee, S.-F. Sia, D. Chen, K.P.Y. Hui, D.K.W. Chu, M.C.W. Chan, P.P.-H. Cheung, and X. Huang, Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro, Antivir. Res. 178 (2020), pp. 104786.
  • E. de Wit, F. Feldmann, J. Cronin, R. Jordan, A. Okumura, T. Thomas, D. Scott, T. Cihlar, and H. Feldmann, Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection, Proc. Natl. Acad. Sci. 117 (2020), pp. 6771–6776.
  • J. Grein, N. Ohmagari, D. Shin, G. Diaz, E. Asperges, A. Castagna, T. Feldt, G. Green, M.L. Green, and F.-X. Lescure, Compassionate use of remdesivir for patients with severe Covid-19, N. Engl. J. Med. 382 (2020), pp. 2327–2336.
  • N. Pala, A. Stevaert, R. Dallocchio, A. Dessì, D. Rogolino, M. Carcelli, V. Sanna, M. Sechi, and L. Naesens, Virtual screening and biological validation of novel influenza virus PA endonuclease inhibitors, ACS Med. Chem. Lett. 6 (2015), pp. 866–871.
  • Y. Gao, L. Yan, Y. Huang, F. Liu, Y. Zhao, L. Cao, T. Wang, Q. Sun, Z. Ming, and L. Zhang, Structure of the RNA-dependent RNA polymerase from COVID-19 virus, Science 368 (2020), pp. 779–782.
  • I. Schomburg, L. Jeske, M. Ulbrich, S. Placzek, A. Chang, and D. Schomburg, The BRENDA enzyme information system–From a database to an expert system, J. Biotechnol. 261 (2017), pp. 194–206.
  • W. Yin, C. Mao, X. Luan, D.-D. Shen, Q. Shen, H. Su, X. Wang, F. Zhou, W. Zhao, and M. Gao, Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir, Science 368 (2020), pp. 1499–1504.
  • A.T. Boraei, P.K. Singh, M. Sechi, and S. Satta, Discovery of novel functionalized 1, 2, 4-triazoles as PARP-1 inhibitors in breast cancer: Design, synthesis and antitumor activity evaluation, Eur J. Med. Chem. 182 (2019), pp. 111621.
  • S. Vilar, G. Cozza, and S. Moro, Medicinal chemistry and the molecular operating environment (MOE): Application of QSAR and molecular docking to drug discovery, Curr. Top. Med. Chem. 8 (2008), pp. 1555–1572.
  • L. Tan, E. Lounkine, and J.R. Bajorath, Similarity searching using fingerprints of molecular fragments involved in protein− ligand interactions, J. Chem. Inf. Model. 48 (2008), pp. 2308–2312.
  • P. Singh and O. Silakari, Molecular dynamics and pharmacophore modelling studies of different subtype (ALK and EGFR (T790M)) inhibitors in NSCLC, SAR QSAR Environ. Res. 28 (2017), pp. 221–233.
  • P.K. Singh and O. Silakari, In silico guided development of imine-based inhibitors for resistance-deriving kinases, J. Biomol. Struct. Dyn. 37 (2019), pp. 2593–2599.
  • C.C.G. Inc, Molecular Operating Environment (MOE), Chemical Computing Group Inc, 1010 Sherbooke St. West, Suite# 910, Montreal, 2016.
  • N. Pala, F. Esposito, E. Tramontano, P.K. Singh, V. Sanna, M. Carcelli, L.D. Haigh, S. Satta, and M. Sechi, Development of a Raltegravir-based photoaffinity-labeled probe for human immunodeficiency virus-1 integrase capture, ACS Med. Chem. Lett. (2020). doi:10.1021/acsmedchemlett.0c00009.
  • J. Dong, N.-N. Wang, Z.-J. Yao, L. Zhang, Y. Cheng, D. Ouyang, A.-P. Lu, and D.-S. Cao, ADMETlab: A platform for systematic ADMET evaluation based on a comprehensively collected ADMET database, J. Cheminf. 10 (2018), pp. 29.
  • P.K. Singh, D. Chaudhari, S. Jain, and O. Silakari, Structure based designing of triazolopyrimidone-based reversible inhibitors for kinases involved in NSCLC, Bioorg. Med Chem. Lett. 29 (2019), pp. 1565–1571.
  • D. Antoine, O. Michielin, and V. Zoete, SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Sci. Rep. 7 (2017), pp. 42717.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.