206
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Endocrine disruption: the noise in available data adversely impacts the models’ performance

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 111-131 | Received 08 Oct 2020, Accepted 11 Dec 2020, Published online: 19 Jan 2021

References

  • H. Liu, X. Yang, and R. Lu, Development of classification model and QSAR model for predicting binding affinity of endocrine disrupting chemicals to human sex hormone-binding globulin, Chemosphere 156 (2016), pp. 1–7. doi:10.1016/j.chemosphere.2016.04.077.
  • E. Furusjö, A. Allard, S. Nilsson, M. Rahmberg, and A. Svenson, State of the art assessment of endocrine disrupters, Tech. Rep. 070307/2009/550687/SER/D3, European Commission, DG Environment, Brussels, BE, 2012.
  • N. Andersson, M. Arena, D. Auteri, S. Barmaz, E. Grignard, A. Kienzler, P. Lepper, A.M. Lostia, S. Munn, J.M. Parra Morte, F. Pellizzato, J. Tarazona, A. Terron, and S. Van der Linden, Guidance for the identification of endocrine disruptors in the context of regulations (EU) No 528/2012 and (EC) No 1107/2009, Efsa J. 16 (2018), pp. 1–135.
  • E. Lo Piparo and A. Worth, Review of QSAR models and software tools for predicting developmental and reproductive toxicity, Tech. Rep. EUR 24522 EN, European Commission JRC, Ispra, IT, 2010.
  • ECHA website, European Chemicals Agency, Helsinki, FI, 2020. Available at https://echa.europa.eu/.
  • OECD, Revised guidance document 150 on standardised test guidelines for evaluating chemicals for endocrine disruption, Tech. Rep. 978-92-64-30474-1, Organisation for Economic Cooperation and Development (OECD), Paris, FR, 2018.
  • S. Adler, D. Basketter, S. Creton, O. Pelkonen, J. Van Benthem, V. Zuang, K.E. Andersen, A. Angers-Loustau, A. Aptula, A. Bal-Price, E. Benfenati, U. Bernauer, J. Bessems, F.Y. Bois, A. Boobis, E. Brandon, S. Bremer, T. Broschard, S. Casati, S. Coecke, R. Corvi, M. Cronin, G. Daston, W. Dekant, S. Felter, E.Grignard, U. Gundert-Remy, T. Heinonen, I. Kimber, J. Kleinjans, H. Komulainen, R. Kreiling, J. Kreysa, S.B. Leite, G. Loizou, G. Maxwell, P. Mazzatorta, S. Munn, S. Pfuhler, P. Phrakonkham, A. Piersma, A. Poth, P. Prieto, G. Repetto, V. Rogiers, G. Schoeters, M. Schwarz, R. Serafimova, H. Tähti, E. Testai, J. van Delft, H. van Loveren, M. Vinken, A. Worth, and J.M. Zaldivar, Alternative (non-animal) methods for cosmetics testing: Current status and future prospects-2010, Arch. Toxicol. 85 (2011), 367–485.
  • OECD guidelines for the testing of chemicals, section 4: Health effects, Organisation for Economic Cooperation and Development (OECD), Paris, FR, 2019. available at http://www.oecd.org/env/ehs/testing/oecdguidelinesforthetestingofchemicals.htm
  • K. Mansouri, A. Abdelaziz, A. Rybacka, A. Roncaglioni, A. Tropsha, A. Varnek, A. Zakharov, A. Worth, A. Richard, C. Grulke, D. Trisciuzzi, D. Fourches, D. Horvath, E. Benfenati, E. Muratov, E.B. Wedebye, F. Grisoni, G.F. Mangiatordi, G.M. Incisivo, H. Hong, H.W. Ng, I.V. Tetko, I. Balabin, J. Kancherla, J. Shen, J. Burton, M. Nicklaus, M. Cassotti, N.G. Nikolov, O. Nicolotti, P.L. Andersson, Q. Zang, R. Politi, R.D. Beger, R. Todeschini, R. Huang, S. Farag, S.A. Rosenberg, S. Slavov, X. Hu, and R. Judson, CERAPP: Collaborative estrogen receptor activity prediction project, Environ. Health Perspect. 124 (2016), pp. 1023–1033. doi:10.1289/ehp.1510267.
  • K. Mansouri, N. Kleinstreuer, A.M. Abdelaziz, D. Alberga, V.M. Alves, P.L. Andersson, C.H. Andrade, F. Bai, I. Balabin, D. Ballabio, E. Benfenati, B. Bhhatarai, S. Boyer, J. Chen, V. Consonni, S. Farag, D. Fourches, A.T. García-Sosa, P. Gramatica, F. Grisoni, C.M. Grulke, H. Hong, D. Horvath, X. Hu, R. Huang, N. Jeliazkova, J. Li, X. Li, H. Liu, S. Manganelli, G.F. Mangiatordi, U. Maran, G. Marcou, T. Martin, E. Muratov, D.T. Nguyen, O. Nicolotti, N.G. Nikolov, U. Norinder, E. Papa, M. Petitjean, G. Piir, P. Pogodin, V. Poroikov, X. Qiao, A.M. Richard, A. Roncaglioni, P. Ruiz, C. Rupakheti, S. Sakkiah, A. Sangion, K.W. Schramm, C. Selvaraj, I. Shah, S. Sild, L. Sun, O. Taboureau, Y. Tang, I.V. Tetko, R. Todeschini, W. Tong, D. Trisciuzzi, A. Tropsha, G.V.D. Driessche, A. Varnek, Z. Wang, E.B. Wedebye, A.J. Williams, H. Xie, A.V. Zakharov, Z. Zheng, and R.S. Judson, CoMPARA: Collaborative modeling project for androgen receptor activity, Environ. Health Perspect. 128 (2020), pp. 027002. doi:10.1289/EHP5580.
  • M.O. Taha, M. Tarairah, H. Zalloum, and G. Abu-Sheikha, Pharmacophore and QSAR modeling of estrogen receptor β ligands and subsequent validation and in silico search for new hits, J. Mol. Graph. Model. 28 (2010), pp. 383–400. doi:10.1016/j.jmgm.2009.09.005.
  • L.B. Salum, I. Polikarpov, and A.D. Andricopulo, Structure-based approach for the study of estrogen receptor binding affinity and subtype selectivity, J. Chem. Inf. Model. 48 (2008), pp. 2243–2253. doi:10.1021/ci8002182.
  • T.I. Netzeva, A.G. Saliner, and A.P. Worth, Comparison of the applicability domain of a quantitative structure-activity relationship for estrogenicity with a large chemical inventory, Environ. Toxicol. Chem. 25 (2006), pp. 1223–1230. doi:10.1897/05-367R.1.
  • J. He, T. Peng, X. Yang, and H. Liu, Development of QSAR models for predicting the binding affinity of endocrine disrupting chemicals to eight fish estrogen receptor, Ecotoxicol. Environ. Saf. 148 (2018), pp. 211–219. doi:10.1016/j.ecoenv.2017.10.023.
  • H. Liu, E. Papa, and P. Gramatica, QSAR prediction of estrogen activity for a large set of diverse chemicals under the guidance of OECD principles, Chem. Res. Toxicol. 19 (2006), pp. 1540–1548. doi:10.1021/tx0601509.
  • L. Zhang, A. Sedykh, A. Tripathi, H. Zhu, A. Afantitis, V.D. Mouchlis, G. Melagraki, I. Rusyn, and A. Tropsha, Identification of putative estrogen receptor-mediated endocrine disrupting chemicals using QSAR- and structure based virtual screening approaches, Toxicol. Appl. Pharmacol. 272 (2013), pp. 67–76. doi:10.1016/j.taap.2013.04.032.
  • J. Li and P. Gramatica, QSAR classification of estrogen receptor binders and pre-screening of potential pleiotropic edcs, SAR QSAR Environ. Res. 21 (2010), pp. 657–669. doi:10.1080/1062936X.2010.528254.
  • M. Todorov, E. Mombelli, S. Aït-Aïssa, and O. Mekenyan, Androgen receptor binding affinity: A QSAR evaluation, SAR QSAR Environ. Res. 22 (2011), pp. 265–291. doi:10.1080/1062936X.2011.569508.
  • A.M. Vinggaard, J. Niemelä, E.B. Wedebye, and G.E. Jensen, Screening of 397 chemicals and development of a quantitative structure-activity relationship model for androgen receptor antagonism, Chem. Res. Toxicol. 21 (2008), pp. 813–823. doi:10.1021/tx7002382.
  • G.E. Jensen, J.R. Niemelä, E.B. Wedebye, and N.G. Nikolov, QSAR models for reproductive toxicity and endocrine disruption in regulatory use - a preliminary investigation, SAR QSAR Environ. Res. 19 (2008), pp. 631–641. doi:10.1080/10629360802550473.
  • NIH, Data from: Tox21 data challenge 2014, National Institutes of Health, 2014. available at https://tripod.nih.gov/tox21.
  • NIH, PubChem, National Library of Medicine, National Center for Biotechnology Information, Bethesda, Maryland, 2019. available at https://pubchem.ncbi.nlm.nih.gov/
  • R.S. Judson, F.M. Magpantay, V. Chickarmane, C. Haskell, N. Tania, J. Taylor, M. Xia, R. Huang, D.M. Rotroff, D.L. Filer, K.A. Houck, M.T. Martin, N. Sipes, A.M. Richard, K. Mansouri, R.W. Setzer, T.B. Knudsen, K.M. Crofton, and R.S. Thomas, Integrated model of chemical perturbations of a biological pathway using 18 in vitro high-throughput screening assays for the estrogen receptor, Toxicol. Sci. 148 (2015), pp. 137–154. doi:10.1093/toxsci/kfv168.
  • N.C. Kleinstreuer, P. Ceger, E.D. Watt, M. Martin, K. Houck, P. Browne, R.S. Thomas, W.M. Casey, D.J. Dix, D. Allen, S. Sakamuru, M. Xia, R. Huang, and R. Judson, Development and validation of a computational model for androgen receptor activity, Chem. Res. Toxicol. 30 (2017), pp. 946–964. doi:10.1021/acs.chemrestox.6b00347.
  • G. Marcou, D. Horvath, F. Bonachera, and A. Varnek, Laboratoire de chemoinformatique UMR 7140 CNRS, University of Strasbourg, Strasbourg, FR, 2019. available at http://infochim.u-strasbg.fr/
  • EPA, Data from: Endocrine disruptor screening program (EDSP) in the 21st century, Environmental Protection Agency, 2012. available at https://www.epa.gov/endocrine-disruption/endocrine-disruptor-screening-program-edsp-21st-century
  • D.J. Dix, R.J. Kavlock, R.W. Setzer, K.A. Houck, A.M. Richard, and M.T. Martin, The ToxCast program for prioritizing toxicity testing of environmental chemicals, Toxicol. Sci. 95 (2006), pp. 5–12. doi:10.1093/toxsci/kfl103.
  • R.R. Tice, C.P. Austin, R.J. Kavlock, and J.R. Bucher, Improving the human hazard characterization of chemicals: A Tox21 updatex, Toxicol. Health Perspect. 7 (2013), pp. 756–765. doi:10.1289/ehp.1205784.
  • R. Kavlock, K. Chandler, K. Houck, S. Hunter, R. Judson, N. Kleinstreuer, T. Knudsen, M. Martin, S. Padilla, D. Reif, A. Richard, D. Rotroff, N. Sipes, and D. Dix, Update on EPA’s ToxCast program: Providing high throughput decision support tools for chemical risk management, Chem. Res. Toxicol. 7 (2012), pp. 1287–1302. doi:10.1021/tx3000939.
  • H. Fang, W. Tong, W.S. Branham, C.L. Moland, S.L. Dial, H. Hong, Q. Xie, R. Perkins, W. Owens, and D.M. Sheehan, Study of 202 natural, synthetic, and environmental chemicals for binding to the androgen receptor, Chem. Res. Toxicol. 16 (2003), pp. 1338–1358. doi:10.1021/tx030011g.
  • C.M. Olsen, E.T.M. Meussen-Elholm, J.K. Hongslo, J. Stenersen, and K.E. Tollefsen, Estrogenic effects of environmental chemicals: An interspecies comparison, Comp. Biochem. Physiol. - C Toxicol. Pharmacol. 141 (2005), pp. 267–274. doi:10.1016/j.cca.2005.07.002.
  • A. Rybacka, C. Rudén, I.V. Tetko, and P.L. Andersson, Identifying potential endocrine disruptors among industrial chemicals and their metabolites - development and evaluation of in silico tools, Chemosphere 139 (2015), pp. 372–378. doi:10.1016/j.chemosphere.2015.07.036.
  • D. Ding, L. Xu, H. Fang, H. Hong, R. Perkins, S. Harris, E.D. Bearden, L. Shi, and W. Tong, The EDKB: An established knowledge base for endocrine disrupting chemicals, BMC Bioinf. 11 (2010), pp. 1471–1478. doi:10.1186/1471-2105-11-S6-S5.
  • M.K. Gilson, T. Liu, M. Baitaluk, G. Nicola, L. Hwang, and J. Chong, BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology, Nucleic Acids Res. 44 (2016), pp. 1045–1053. doi:10.1093/nar/gkv1072.
  • QSAR Toolbox v 4.1, OASIS Laboratory of mathematical chemistry, Burgas, BG, 2017. available at http://oasis-lmc.org/products/software/toolbox.aspx
  • M. Berthold, N. Cebron, F. Dill, T. Gabriel, T. Kötter, T. Meinl, P. Ohl, K. Thiel, and B. Wiswedel, KNIME - the konstanz information miner : Version 2.0 and beyond, SIGKDD Explor. 11 (2009), pp. 26–31. doi:10.1145/1656274.1656280.
  • F. Ruggiu, G. Marcou, A. Varnek, and D. Horvath, ISIDA property-labelled fragment descriptors, Mol. Inform. 29 (2010), pp. 855–868. doi:10.1002/minf.201000099.
  • C.M. Bishop, M. Svensén, C.K.I. Williams, and M. Svens, The generative topographic mapping, Neural Comput. 10 (1998), pp. 215–234. doi:10.1162/089976698300017953.
  • N. Kireeva, I.I. Baskin, H.A. Gaspar, D. Horvath, G. Marcou, and A. Varnek, Generative topographic mapping (GTM): Universal tool for data visualization, structure-activity modeling and dataset comparison, Mol. Inform. 31 (2012), pp. 301–312. doi:10.1002/minf.201100163.
  • D. Horvath, J. Brown, G. Marcou, and A. Varnek, An evolutionary optimizer of libsvm models, Challenges 5 (2014), pp. 450–472. doi:10.3390/challe5020450.
  • C. Chih-Chung and L. Chih-Jen, LIBSVM: A library for support vector machines, ACM Trans. Intell. Syst. Technol. 2 (2011), pp. 1–27. doi:10.1145/1961189.1961199.
  • M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H. Witten, The weka workbench, in Data Mining: Practical Machine Learning Tools And Techniques, I.H. Witte, ed., Morgan Kaufman Publishers, San Fransisco, 2005, pp. 363–449.
  • F. Lunghini, G. Marcou, P. Azam, R. Patoux, M.H. Enrici, F. Bonachera, D. Horvath, and A. Varnek, QSPR models for bioconcentration factor (BCF): Are they able to predict data of industrial interest? SAR QSAR Environ. Res. 30 (2019), pp. 507–524. doi:10.1080/1062936X.2019.1626278.
  • F. Lunghini, G. Marcou, P. Azam, D. Horvath, R. Patoux, E. Van Miert, and A. Varnek, Consensus models to predict oral rat acute toxicity and validation on a dataset coming from the industrial context, SAR QSAR Environ. Res. 30 (2019), pp. 879–897. doi:10.1080/1062936X.2019.1672089.
  • D.G. Lloyd, R.B. Hughes, D.M. Zisterer, D.C. Williams, C. Fattorusso, B. Catalanotti, G. Campiani, and M.J. Meegan, Benzoxepin-derived estrogen receptor modulators: A novel molecular scaffold for the estrogen receptor, J. Med. Chem. 47 (2004), pp. 5612–5615. doi:10.1021/jm0495834.
  • T.A. Grese, S. Cho, D.R. Finley, A.G. Godfrey, C.D. Jones, C.W. Lugar, M.J. Martin, K. Matsumoto, L.D. Pennington, M.A. Winter, M. Dee Adrian, H.W. Cole, D.E. Magee, D. Lynn Phillips, E.R. Rowley, L.L. Short, A.L. Glasebrook, and H.U. Bryant, Structure−activity relationships of selective estrogen receptor modulators: Modifications to the 2-arylbenzothiophene core of raloxifene, J. Med. Chem. 40 (1997), pp. 146–167. doi:10.1021/jm9606352.
  • J.J. Naveja, U. Norinder, D. Mucs, E. López-López, and J.L. Medina-Franco, Chemical space, diversity and activity landscape analysis of estrogen receptor binders, RSC Adv. 8 (2018), pp. 38229–38237. doi:10.1039/C8RA07604A.
  • C.L. Waller, B.W. Juma, L. Earl Gray, and W.R. Kelce, Three-dimensional quantitative structure-activity relationships for androgen receptor ligands, Toxicol. Appl. Pharmacol. 137 (1996), pp. 219–227. doi:10.1006/taap.1996.0075.
  • S. Kamata, T. Matsui, N. Haga, M. Nakamura, K. Odaguchi, T. Itoh, T. Shimizu, T. Suzuki, and M. Ishibashi, Aldosterone antagonists. 2. synthesis and biological activities of 11,12-dehydropregnane derivatives, J. Med. Chem. 30 (1987), pp. 1647–1658. doi:10.1021/jm00392a022.
  • Y.S. Choe, P.J. Lidstroem, D.Y. Chi, T.A. Bonasera, M.J. Welch, and J.A. Katzenellenbogen, Synthesis of 11.beta.-[18f]fluoro-5.alpha.-dihydrotestosterone and 11.beta.-[18f]fluoro-19-nor-5.alpha.-dihydrotestosterone: Preparation via halofluorination-reduction, receptor binding, and tissue distribution, J. Med. Chem. 38 (1995), pp. 816–825. doi:10.1021/jm00005a009.
  • OECD, Guidance document on the validation of (quantitative) structure activity relationship [(q)sar] models, Tech. Rep. ENV/JM/MONO(2007)2, Organisation for Economic Cooperation and Development, Paris, FR, 2007.
  • A. Tropsha, P. Gramatica, and V.K. Gombar, The importance of being earnest: Validation is the absolute essential for successful application and interpretation of QSPR models, QSAR Comb. Sci. 22 (2003), pp. 69–77. doi:10.1002/qsar.200390007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.