131
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Synthesis, biological activity, and four-dimensional quantitative structure–activity analysis of 2-arylidene indan-1,3-dione derivatives tested against Daphnia magna

ORCID Icon, ORCID Icon, ORCID Icon, , , , ORCID Icon & ORCID Icon show all
Pages 133-150 | Received 02 Nov 2020, Accepted 15 Dec 2020, Published online: 19 Feb 2021

References

  • K. Singh, Applications of indan-1,3-dione in heterocyclic chemistry, Curr. Org. Synth. 13 (2016), pp. 385–407. doi:10.2174/1570179412666150817222851.
  • R. Pluskota and M. Koba, Indandione and its derivatives - Chemical compounds with high biological potential, Mini-Rev. Org. Chem. 18 (2018), pp. 1321–1330. doi:10.2174/1389557518666180330101809.
  • A.F.C.S. Oliveira, A.P.M. Souza, A.S. de Oliveira, M.L. da Silva, F.M. de Oliveira, E.G. Santos, I.E.P. da Silva, R.S. Ferreira, F.S. Villela, F.T. Martins, D.H.S. Leal, B.G. Vaz, R.R. Teixeira, and S.O. de Paula, Zirconium catalyzed synthesis of 2-arylidene Indan-1,3-diones and evaluation of their inhibitory activity against NS2B-NS3 WNV protease, Eur. J. Med. Chem. 149 (2018), pp. 98–109. doi:10.1016/j.ejmech.2018.02.037.
  • V.K. Tyagi, A.K. Chopra, N.C. Durgapal, and A. Kumar, Evaluation of Daphnia magna as an indicator of toxicity and treatment efficacy of municipal sewage treatment plant, J. Appl. Sci. Environ. Mgt. 11 (2007), pp. 61–67.
  • M. Wagil, A. Białk-Bielińska, A. Puckowski, K. Wychodnik, J. Maszkowska, E. Mulkiewicz, J. Kumirska, P. Stepnowski, and S. Stolte, Toxicity of anthelmintic drugs (fenbendazole and flubendazole) to aquatic organisms, Environ. Sci. Pollut. Res. 22 (2015), pp. 2566–2573. doi:10.1007/s11356-014-3497-0.
  • H. Ha, K. Park, G. Kang, and S. Lee, QSAR study using acute toxicity of Daphnia magna and Hyalella azteca through exposure to polycyclic aromatic hydrocarbons (PAHs), Ecotoxicology 28 (2019), pp. 333–342. doi:10.1007/s10646-019-02025-1.
  • M.M.C. Ferreira, Polycyclic aromatic hydrocarbons: A QSPR study, Chemosphere 44 (2001), pp. 125–146. doi:10.1016/S0045-6535(00)00275-7.
  • K. Khan, P.M. Khan, G. Lavado, C. Valsecchi, J. Pasqualini, D. Baderna, M. Marzo, A. Lombardo, K. Roy, and E. Benfenati, QSAR modeling of Daphnia magna and fish toxicities of biocides using 2D descriptors, Chemosphere 229 (2019), pp. 8–17. doi:10.1016/j.chemosphere.2019.04.204.
  • E. Perales, J.I. García, E. Pires, L. Aldea, L. Lomba, and B. Giner, Ecotoxicity and QSAR studies of glycerol ethers in Daphnia magna, Chemosphere 183 (2017), pp. 277–285. doi:10.1016/j.chemosphere.2017.05.107.
  • A.R. Murthy, S.D. Wyrick, and I.H. Hall, Hypolipidemic activity of indan-1,3-dione derivatives in rodents, J. Med. Chem. 28 (1985), pp. 1591–1596. doi:10.1021/jm00149a008.
  • S.D. Karakotov, V.V. Shapilova, A.L. Chimishkyan, and L.Y. Kozenasheva, Synthetic methods, anticoagulation activity and toxicity of 2-acyl substituted derivatives of indane-1,3-dione, ChemInform 36 (2005). doi:10.1002/chin.200518241.
  • K. Mitka, P. Kowalski, D. Pawelec, and Z. Majka, Synthesis of novel indane-1,3-dione derivatives and their biological evaluation as anticoagulant agents, Croat. Chem. Acta 82 (2009), pp. 613–618.
  • A.G. da Silva and M.N. Ramos, A multivariate statistical analysis of the quantitative structure-activity relationships (QSAR) of 2-(substituted phenyl)indan-1,3-diones with hypolipidemic activity, J. Braz. Chem. Soc. 23 (2012), pp. 1747–1755. doi:10.1590/S0103-50532012005000040.
  • M. Jeyachandran and P. Ramesh, Synthesis, antimicrobial, and anticoagulant activities of 2-(arylsulfonyl)indan-1,3-diones, Org. Chem. Int. 2011 (2011), pp. Article ID 360810. doi:10.1155/2011/360810.
  • O. Kouzi, E. Pontiki, and D. Hadipavlou-Litina, 2-Arylidene-1-indandiones as pleitropic agents with antioxidante and inhibitory enzymes activities, Molecules 24 (2019), pp. 44ll. doi:10.3390/molecules24234411.
  • D.D. Dantzger, M. Dantzger, C.M. Jonsson, and H. Aoyama, In vitro effects of agriculture pollutants on microcrustacean and fish acid phosphatases, Water Air Soil Pollut. 228 (2017), pp. 391. doi:10.1007/s11270-017-3570-7.
  • Manugistics Group Inc., STATGRAPHICS® Plus Version 5.1, Rockville, MD, USA, 2011.
  • Cambridge Crystallographic Data Centre, Cambridge Structural Database Software Version 5.29-2007 + 1 Update, Cambridge Crystallographic Data Centre, UK, 2007.
  • Available at https://www.ccdc.cam.ac.uk/structures/search?id=doi:10.5517/ccdc.csd.cc1lsgc6&sid=DataCite accessed October, 2020.
  • Available at https://www.ccdc.cam.ac.uk/structures/search?id=doi:10.5517/ccdc.csd.cc1lsgb5&sid=DataCite accessed October, 2020.
  • F. Weigend and R. Ahlrich, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy, Phys. Chem. Chem. Phys. 7 (2005), pp. 3297–3305. doi:10.1039/b508541a
  • M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, and J.A. Pople, Gaussian 09 (Revision A.02), Gaussian, Inc., Wallingford CT, 2016.
  • A.B. Nielsen and A.J. Holder, GaussView 3.0, Gaussian Inc., Pittsburgh, PA, 2000-2003.
  • J.P.A. Martins, E.G. Barbosa, K.F.M. Pasqualato, and M.M.C. Ferreira, LQTA-QSAR: A new 4D-QSAR methodology, J. Chem. Inf. Model. 49 (2009), pp. 1428–1436. doi:10.1021/ci900014f.
  • E. Lindahl, B. Hess, and D. van der Spoel, GROMACS 3.0: A package for molecular simulation and trajectory analysis, J. Mol. Mod. 7 (2001), pp. 306–317. doi:10.1007/s008940100045.
  • H. Kubinyi, QSAR and 3D QSAR in drug design Part 1: Methodology, Drug Discov. Today 2 (1997), pp. 457–467. doi:10.1016/S1359-6446(97)01079-9.
  • E.G. Barbosa and M.M.C. Ferreira, Digital filters for molecular interaction field descriptors, Mol. Inf. 31 (2012), pp. 75–84. doi:10.1002/minf.201000181.
  • J.P.A. Martins and M.M.C. Ferreira, QSAR modeling: A new open source computational package to generate and validate QSAR models, Quim. Nova. 36 (2013), pp. 554–560. doi:10.1590/S0100-40422013000400013.
  • R.F. Teófilo, J.P.A. Martins, and M.M.C. Ferreira, Sorting variables by using informative vectors as a strategy for feature selection in multivariate regression, J. Chemom. 23 (2009), pp. 32–48. doi:10.1002/cem.1192.
  • M.M.C. Ferreira, Multivariate QSAR, J. Braz. Chem. Soc. 13 (2002), pp. 742–753. doi:10.1590/S0103-50532002000600004.
  • OECD Environment Health and Safety Publications Series on Testing and Assessment No. 69, OECD, guidance document on the validation of (Quantitative) Structure-Activity Relationship [(Q)SAR] models, Paris, 2007, Available at http://www.oecd.org/dataoecd/55/35/38130292.pdf. Accessed October, 2020.
  • R. Kiralj and M.M.C. Ferreira, Basic validation procedures for regression models in QSAR and QSPR studies: Theory and application, J. Braz. Chem. Soc. 20 (2009), pp. 770–787. doi:10.1590/S0103-50532009000400021.
  • L. Eriksson, J. Jaworska, A.P. Worth, M.T. Cronin, P.R.M. Mcdowell, and P. Gramatica, Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSAR, Environ. Health Persp. 111 (2003), pp. 1361–1375. doi:10.1289/ehp.5758.
  • R. Kiralj and M.M.C. Ferreira, Is your QSAR/QSPR descriptor real or trash? J. Chemom. 24 (2010), pp. 681–693. doi:10.1002/cem.1331.
  • S. Verma, A.K. Srivastava, and O.P. Pandey, A review on chalcones synthesis and their biological activity, Pharma. Tutor. 6 (2018), pp. 22–39. doi:10.29161/PT.v6.i2.2018.22.
  • H.N. Pati, U. Das, E.D. Clercq, J. Balzarini, and J.R. Dimmock, Molecular modifications of 2-arylidene-1-indanones leading to increased cytotoxic potencies, J. Enz. Inh. Med. Chem. 22 (2007), pp. 37–42. doi:10.1080/14756360600958057.
  • P.C. von der Ohe, R. Kühne, R.-U. Ebert, R. Altenburger, M. Liess, and G. Schüurmann, Structural Alertss - A new classification model to discriminate excess toxicity from narcotic effect levels of organic compounds in the acute daphnid assay, Chem. Res. Toxicol. 18 (2005), pp. 536–555. doi:10.1021/tx0497954.
  • S.J. Enoch, C.M. Ellison, T.W. Schultz, and M.T.D. Cronin, A review of the electrophilic reaction chemistry involved in covalent protein binding relevant to toxicity, Crit. Rev. Toxicol. 41 (2011), pp. 783–802. doi:10.3109/10408444.2011.598141.
  • M. Matveieva, M.T.D. Cronin, and P. Polishchuk, Interpretation of QSAR models: Mining structural patterns taking into account molecular context, Mol. Inf. 38 (2019), pp. 1800084. doi:10.1002/minf.201800084.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.