160
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Insights into interaction mechanism of inhibitors E3T, E3H and E3B with CREB binding protein by using molecular dynamics simulations and MM-GBSA calculations

ORCID Icon, , , , &
Pages 221-246 | Received 13 Nov 2020, Accepted 04 Feb 2021, Published online: 04 Mar 2021

References

  • R. Eckner, M.E. Ewen, D. Newsome, M. Gerdes, J.A. DeCaprio, J.B. Lawrence, and D.M. Livingston, Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor, Genes Dev. 8 (1994), pp. 869–884. doi:10.1101/gad.8.8.869.
  • X.N. Chen and J.R. Korenberg, Localization of human CREBBP (CREB binding protein) to 16p13.3 by fluorescence in situ hybridization, Cytogenet. Cell Genet. 71 (1995), pp. 56–57. doi:10.1159/000134062.
  • Z. Arany, W.R. Sellers, D.M. Livingston, and R. Eckner, E1A-associated p300 and CREB-associated CBP belong to a conserved family of coactivators, Cell 77 (1994), pp. 799–800. doi:10.1016/0092-8674(94)90127-9.
  • H.M. Chan and N.B. La Thangue, p300/CBP proteins: HATs for transcriptional bridges and scaffolds, J. Cell Sci. 114 (2001), pp. 2363–2373.
  • C.H. Arrowsmith, C. Bountra, P.V. Fish, K. Lee, and M. Schapira, Epigenetic protein families: A new frontier for drug discovery, Nat. Rev. Drug Discov. 11 (2012), pp. 384–400. doi:10.1038/nrd3674.
  • P. Filippakopoulos, S. Picaud, M. Mangos, T. Keates, J.P. Lambert, D. Barsyte-Lovejoy, I. Felletar, R. Volkmer, S. Müller, T. Pawson, A.C. Gingras, C.H. Arrowsmith, and S. Knapp, Histone recognition and large-scale structural analysis of the human bromodomain family, Cell 149 (2012), pp. 214–231. doi:10.1016/j.cell.2012.02.013.
  • C. Dhalluin, J.E. Carlson, L. Zeng, C. He, A.K. Aggarwal, and M.M. Zhou, Structure and ligand of a histone acetyltransferase bromodomain, Nature 399 (1999), pp. 491–496. doi:10.1038/20974.
  • E.L. Chekler, J.A. Pellegrino, T.A. Lanz, R.A. Denny, A.C. Flick, J. Coe, J. Langille, A. Basak, S. Liu, I.A. Stock, P. Sahasrabudhe, P.D. Bonin, K. Lee, M.T. Pletcher, and L.H. Jones, Transcriptional profiling of a selective CREB binding protein bromodomain inhibitor highlights therapeutic opportunities, Chem. Biol. 22 (2015), pp. 1588–1596. doi:10.1016/j.chembiol.2015.10.013.
  • S. Ghosh, A. Taylor, M. Chin, H.R. Huang, A.R. Conery, J.A. Mertz, A. Salmeron, P.J. Dakle, D. Mele, A. Cote, H. Jayaram, J.W. Setser, F. Poy, G. Hatzivassiliou, D. DeAlmeida-Nagata, P. Sandy, C. Hatton, F.A. Romero, E. Chiang, T. Reimer, T. Crawford, E. Pardo, V.G. Watson, V. Tsui, A.G. Cochran, L. Zawadzke, J.C. Harmange, J.E. Audia, B.M. Bryant, R.T. Cummings, S.R. Magnuson, J.L. Grogan, S.F. Bellon, B.K. Albrecht, R.J. Sims 3rd, and J.M. Lora, Regulatory T cell modulation by CBP/EP300 bromodomain inhibition, J. Biol. Chem. 291 (2016), pp. 13014–13027. doi:10.1074/jbc.M115.708560.
  • D.A. Hay, O. Fedorov, S. Martin, D.C. Singleton, C. Tallant, C. Wells, S. Picaud, M. Philpott, O.P. Monteiro, C.M. Rogers, S.J. Conway, T.P. Rooney, A. Tumber, C. Yapp, P. Filippakopoulos, M.E. Bunnage, S. Müller, S. Knapp, C.J. Schofield, and P.E. Brennan, Discovery and optimization of small-molecule ligands for the CBP/p300 bromodomains, J. Am. Chem. Soc. 136 (2014), pp. 9308–9319. doi:10.1021/ja412434f.
  • I. Ianculescu, D.Y. Wu, K.D. Siegmund, and M.R. Stallcup, Selective roles for cAMP response element-binding protein binding protein and p300 protein as coregulators for androgen-regulated gene expression in advanced prostate cancer cells, J. Biol. Chem. 287 (2012), pp. 4000–4013. doi:10.1074/jbc.M111.300194.
  • F. Wang, C.B. Marshall, and M. Ikura, Transcriptional/epigenetic regulator CBP/p300 in tumorigenesis: Structural and functional versatility in target recognition, Cell. Mol. Life Sci. 70 (2013), pp. 3989–4008.
  • R.E. Kiernan, C. Vanhulle, L. Schiltz, E. Adam, H. Xiao, F. Maudoux, C. Calomme, A. Burny, Y. Nakatani, K.T. Jeang, M. Benkirane, and C. Van Lint, HIV-1 tat transcriptional activity is regulated by acetylation, Embo J. 18 (1999), pp. 6106–6118. doi:10.1093/emboj/18.21.6106.
  • R.H. Giles, D.J. Peters, and M.H. Breuning, Conjunction dysfunction: CBP/p300 in human disease, Trends Genet. 14 (1998), pp. 178–183. doi:10.1016/S0168-9525(98)01438-3.
  • H. Ohnishi, T. Taki, H. Yoshino, J. Takita, K. Ida, M. Ishii, K. Nishida, Y. Hayashi, M. Taniwaki, F. Bessho, and T. Watanabe, A complex t(1;22;11)(q44;q13;q23) translocation causing MLL-p300 fusion gene in therapy-related acute myeloid leukemia, Eur. J. Haematol. 81 (2008), pp. 475–480. doi:10.1111/j.1600-0609.2008.01154.x.
  • K. Frønsdal, N. Engedal, T. Slagsvold, and F. Saatcioglu, CREB binding protein is a coactivator for the androgen receptor and mediates cross-talk with AP-1, J. Biol. Chem. 273 (1998), pp. 31853–31859. doi:10.1074/jbc.273.48.31853.
  • J. Bouchal, F.R. Santer, P.P. Höschele, E. Tomastikova, H. Neuwirt, and Z. Culig, Transcriptional coactivators p300 and CBP stimulate estrogen receptor-beta signaling and regulate cellular events in prostate cancer, Prostate 71 (2011), pp. 431–437. doi:10.1002/pros.21257.
  • Q. Xiang, C. Wang, Y. Zhang, X. Xue, M. Song, C. Zhang, C. Li, C. Wu, K. Li, X. Hui, Y. Zhou, J.B. Smaill, A.V. Patterson, D. Wu, K. Ding, and Y. Xu, Discovery and optimization of 1-(1H-indol-1-yl)ethanone derivatives as CBP/EP300 bromodomain inhibitors for the treatment of castration-resistant prostate cancer, Eur. J. Med. Chem. 147 (2018), pp. 238–252. doi:10.1016/j.ejmech.2018.01.087.
  • T.D. Crawford, F.A. Romero, K.W. Lai, V. Tsui, A.M. Taylor, G. De Leon Boenig, C.L. Noland, J. Murray, J. Ly, E.F. Choo, T.L. Hunsaker, E.W. Chan, M. Merchant, S. Kharbanda, K.E. Gascoigne, S. Kaufman, M.H. Beresini, J. Liao, W. Liu, K.X. Chen, Z. Chen, A.R. Conery, A. Côté, H. Jayaram, Y. Jiang, J.R. Kiefer, T. Kleinheinz, Y. Li, J. Maher, E. Pardo, F. Poy, K.L. Spillane, F. Wang, J. Wang, X. Wei, Z. Xu, Z. Xu, I. Yen, L. Zawadzke, X. Zhu, S. Bellon, R. Cummings, A.G. Cochran, B.K. Albrecht, and S. Magnuson, Discovery of a potent and selective in vivo probe (GNE-272) for the bromodomains of CBP/EP300, J. Med. Chem. 59 (2016), pp. 10549–10563. doi:10.1021/acs.jmedchem.6b01022.
  • S. Picaud, O. Fedorov, A. Thanasopoulou, K. Leonards, K. Jones, J. Meier, H. Olzscha, O. Monteiro, S. Martin, M. Philpott, A. Tumber, P. Filippakopoulos, C. Yapp, C. Wells, K.H. Che, A. Bannister, S. Robson, U. Kumar, N. Parr, K. Lee, D. Lugo, P. Jeffrey, S. Taylor, M.L. Vecellio, C. Bountra, P.E. Brennan, A. O’Mahony, S. Velichko, S. Müller, D. Hay, D.L. Daniels, M. Urh, N.B. La Thangue, T. Kouzarides, R. Prinjha, J. Schwaller, and S. Knapp, Generation of a selective small molecule inhibitor of the CBP/p300 bromodomain for leukemia therapy, Cancer Res. 75 (2015), pp. 5106–5119. doi:10.1158/0008-5472.CAN-15-0236.
  • T.A. Popp, C. Tallant, C. Rogers, O. Fedorov, P.E. Brennan, S. Müller, S. Knapp, and F. Bracher, Development of selective CBP/P300 benzoxazepine bromodomain inhibitors, J. Med. Chem. 59 (2016), pp. 8889–8912. doi:10.1021/acs.jmedchem.6b00774.
  • A.M. Taylor, A. Côté, M.C. Hewitt, R. Pastor, Y. Leblanc, C.G. Nasveschuk, F.A. Romero, T.D. Crawford, N. Cantone, H. Jayaram, J. Setser, J. Murray, M.H. Beresini, G. De Leon Boenig, Z. Chen, A.R. Conery, R.T. Cummings, L.A. Dakin, E.M. Flynn, O.W. Huang, S. Kaufman, P.J. Keller, J.R. Kiefer, T. Lai, Y. Li, J. Liao, W. Liu, H. Lu, E. Pardo, V. Tsui, J. Wang, Y. Wang, Z. Xu, F. Yan, D. Yu, L. Zawadzke, X. Zhu, X. Zhu, R.J. Sims 3rd, A.G. Cochran, S. Bellon, J.E. Audia, S. Magnuson, and B.K. Albrecht, Fragment-based discovery of a selective and cell-active benzodiazepinone CBP/EP300 bromodomain inhibitor (CPI-637), ACS Med. Chem. Lett. 7 (2016), pp. 531–536. doi:10.1021/acsmedchemlett.6b00075.
  • M. Xu, A. Unzue, J. Dong, D. Spiliotopoulos, C. Nevado, and A. Caflisch, Discovery of CREBBP bromodomain inhibitors by high-throughput docking and hit optimization guided by molecular dynamics, J. Med. Chem. 59 (2016), pp. 1340–1349. doi:10.1021/acs.jmedchem.5b00171.
  • M. Pervaiz, P. Mishra, and S. Günther, Bromodomain drug discovery – The past, the present, and the future, Chem. Rec. 18 (2018), pp. 1808–1817. doi:10.1002/tcr.201800074.
  • Y. Xiong, M. Zhang, and Y. Li, Recent advances in the development of CBP/p300 bromodomain inhibitors, Curr. Med. Chem. 27 (2020), pp. 5583–5598. doi:10.2174/0929867326666190731141055.
  • A. Hammitzsch, C. Tallant, O. Fedorov, A. O’Mahony, P.E. Brennan, D.A. Hay, F.O. Martinez, M.H. Al-Mossawi, J. De Wit, M. Vecellio, C. Wells, P. Wordsworth, S. Müller, S. Knapp, and P. Bowness, CBP30, a selective CBP/p300 bromodomain inhibitor, suppresses human Th17 responses, Proc. Natl. Acad. Sci. U. S. A. 112 (2015), pp. 10768–10773. doi:10.1073/pnas.1501956112.
  • F. Romero, J. Murray, K. Lai, V. Tsui, B. Albrecht, L. An, M. Beresini, G. Boenig, S. Bronner, E. Chan, K. Chen, Z. Chen, E. Choo, K. Clagg, K. Clark, T. Crawford, P. Cyr, D. Nagata, K. Gascoigne, and S. Magnuson, GNE-781, A highly advanced potent and selective bromodomain inhibitor of cyclic adenosine monophosphate response element binding protein, binding protein (CBP), J. Med. Chem. 60 (2017), pp. 9162–9183. doi:10.1021/acs.jmedchem.7b00796.
  • M. Hügle, X. Lucas, D. Ostrovskyi, P. Regenass, S. Gerhardt, O. Einsle, M. Hau, M. Jung, B. Breit, S. Günther, and D. Wohlwend, Beyond the BET family: Targeting CBP/p300 with 4-Acyl pyrroles, Angew. Chem. Int. Edit. 56 (2017), pp. 12476–12480. doi:10.1002/anie.201705516.
  • K.W. Lai, F.A. Romero, V. Tsui, M.H. Beresini, G. De Leon Boenig, S.M. Bronner, K. Chen, Z. Chen, E.F. Choo, T.D. Crawford, P. Cyr, S. Kaufman, Y. Li, J. Liao, W. Liu, J. Ly, J. Murray, W. Shen, J. Wai, F. Wang, C. Zhu, X. Zhu, and S. Magnuson, Design and synthesis of a biaryl series as inhibitors for the bromodomains of CBP/P300, Bioorg. Med. Chem. Lett. 28 (2018), pp. 15–23. doi:10.1016/j.bmcl.2017.11.025.
  • M.A. Azam, S. Jupudi, N. Saha, and R.K. Paul, Combining molecular docking and molecular dynamics studies for modelling Staphylococcus aureus MurD inhibitory activity, SAR QSAR Environ. Res. 30 (2019), pp. 1–20. doi:10.1080/1062936X.2018.1539034.
  • P. Kamsri, A. Punkvang, S. Hannongbua, K. Suttisintong, P. Kittakoop, J. Spencer, A.J. Mulholland, and P. Pungpo, In silico study directed towards identification of the key structural features of GyrB inhibitors targeting MTB DNA gyrase: HQSAR, CoMSIA and molecular dynamics simulations, SAR QSAR Environ. Res. 30 (2019), pp. 775–800. doi:10.1080/1062936X.2019.1658218.
  • J. Chen, J. Wang, B. Yin, L. Pang, W. Wang, and W. Zhu, Molecular mechanism of binding selectivity of inhibitors toward BACE1 and BACE2 revealed by multiple short molecular dynamics simulations and free-energy predictions, ACS Chem. Neurosci. 10 (2019), pp. 4303–4318. doi:10.1021/acschemneuro.9b00348.
  • J. Devillers, Computational Design of Chemicals for the Control of Mosquitoes and Their Diseases, CRC Press, Boca Raton, FL, 2018.
  • J. Wang and Y. Miao, Mechanistic insights into specific G protein interactions with adenosine receptors, J. Phys. Chem. B 123 (2019), pp. 6462–6473. doi:10.1021/acs.jpcb.9b04867.
  • J. Wang and Y. Miao, Peptide Gaussian accelerated molecular dynamics (Pep-GaMD): Enhanced sampling and free energy and kinetics calculations of peptide binding, J. Chem. Phys. 153 (2020), pp. 154109. doi:10.1063/5.0021399.
  • S.L. Wu, L.F. Wang, H.B. Sun, W. Wang, and Y.X. Yu, Probing molecular mechanism of inhibitor bindings to bromodomain-containing protein 4 based on molecular dynamics simulations and principal component analysis, SAR QSAR Environ. Res. 31 (2020), pp. 547–570. doi:10.1080/1062936X.2020.1777584.
  • J. Wang, Q. Shao, B.P. Cossins, J. Shi, K. Chen, and W. Zhu, Thermodynamics calculation of protein-ligand interactions by QM/MM polarizable charge parameters, J. Biomol. Struct. Dyn. 34 (2016), pp. 163–176. doi:10.1080/07391102.2015.1019928.
  • X. Jia, M. Wang, Y. Shao, G. König, B.R. Brooks, J.Z. Zhang, and Y. Mei, Calculations of solvation free energy through energy reweighting from molecular mechanics to quantum mechanics, J. Chem. Theory Comput. 12 (2016), pp. 499–511. doi:10.1021/acs.jctc.5b00920.
  • T. Hou, J. Wang, Y. Li, and W. Wang, Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations, J. Chem. Inf. Model. 51 (2011), pp. 69–82. doi:10.1021/ci100275a.
  • J. Chen, X. Wang, T. Zhu, Q. Zhang, and J.Z. Zhang, A comparative insight into amprenavir resistance of mutations V32I, G48V, I50V, I54V, and I84V in HIV-1 protease based on thermodynamic integration and MM-PBSA methods, J. Chem. Inf. Model. 55 (2015), pp. 1903–1913. doi:10.1021/acs.jcim.5b00173.
  • U. Raj, H. Kumar, and P.K. Varadwaj, Molecular docking and dynamics simulation study of flavonoids as BET bromodomain inhibitors, J. Biomol. Struct. Dyn. 35 (2017), pp. 2351–2362. doi:10.1080/07391102.2016.1217276.
  • J. Chen, X. Wang, L. Pang, J.Z.H. Zhang, and T. Zhu, Effect of mutations on binding of ligands to guanine riboswitch probed by free energy perturbation and molecular dynamics simulations, Nucleic Acids Res. 47 (2019), pp. 6618–6631. doi:10.1093/nar/gkz499.
  • F. Yan, X. Liu, S. Zhang, J. Su, Q. Zhang, and J. Chen, Computational revelation of binding mechanisms of inhibitors to endocellular protein tyrosine phosphatase 1B using molecular dynamics simulations, J. Biomol. Struct. Dyn. 36 (2018), pp. 3636–3650.
  • S. Majumdar, S.C. Basak, C.N. Lungu, M.V. Diudea, and G.D. Grunwald, Mathematical structural descriptors and mutagenicity assessment: A study with congeneric and diverse datasets, SAR QSAR Environ. Res. 29 (2018), pp. 579–590. doi:10.1080/1062936X.2018.1496475.
  • J. Chen, B. Yin, W. Wang, and H. Sun, Effects of disulfide bonds on binding of inhibitors to β-amyloid cleaving enzyme 1 decoded by multiple replica accelerated molecular dynamics simulations, ACS Chem. Neurosci. 11 (2020), pp. 1811–1826. doi:10.1021/acschemneuro.0c00234.
  • L.F. Wang, Y. Wang, Z.Y. Yang, J. Zhao, H.B. Sun, and S.L. Wu, Revealing binding selectivity of inhibitors toward bromodomain-containing proteins 2 and 4 using multiple short molecular dynamics simulations and free energy analyses, SAR QSAR Environ. Res. 31 (2020), pp. 373–398. doi:10.1080/1062936X.2020.1748107.
  • Q. Wang, X. An, J. Xu, Y. Wang, L. Liu, E.L. Leung, and X. Yao, Classical molecular dynamics and metadynamics simulations decipher the mechanism of CBP30 selectively inhibiting CBP/p300 bromodomains, Org. Biomol. Chem. 16 (2018), pp. 6521–6530. doi:10.1039/C8OB01526K.
  • J. Zhu, J. Dong, L. Batiste, A. Unzue, A. Dolbois, V. Pascanu, P. Śledź, C. Nevado, and A. Caflisch, Binding Motifs in the CBP bromodomain: An analysis of 20 crystal structures of complexes with small molecules, ACS Med. Chem. Lett. 9 (2018), pp. 929–934. doi:10.1021/acsmedchemlett.8b00286.
  • J. Chen, W. Wang, H. Sun, L. Pang, and B. Yin, Mutation-mediated influences on binding of anaplastic lymphoma kinase to crizotinib decoded by multiple replica gaussian accelerated molecular dynamics, J. Comput. Aid. Mol. Des. 34 (2020), pp. 1289–1305. doi:10.1007/s10822-020-00355-5.
  • D.A. Case, T.E. Cheatham 3rd, T. Darden, H. Gohlke, R. Luo, K.M. Merz Jr., A. Onufriev, C. Simmerling, B. Wang, and R.J. Woods, The Amber biomolecular simulation programs, J. Comput. Chem. 26 (2005), pp. 1668–1688. doi:10.1002/jcc.20290.
  • D.C. Bas, D.M. Rogers, and J.H. Jensen, Very fast prediction and rationalization of pKa values for protein-ligand complexes, Proteins 73 (2008), pp. 765–783. doi:10.1002/prot.22102.
  • H. Li, A.D. Robertson, and J.H. Jensen, Very fast empirical prediction and rationalization of protein pKa values, Proteins 61 (2005), pp. 704–721. doi:10.1002/prot.20660.
  • A. Jakalian, D.B. Jack, and C.I. Bayly, Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation, J. Comput. Chem. 23 (2002), pp. 1623–1641. doi:10.1002/jcc.10128.
  • A. Jakalian, B.L. Bush, D.B. Jack, and C.I. Bayly, Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method, J. Comput. Chem. 21 (2000), pp. 132–146. doi:10.1002/(SICI)1096-987X(20000130)21:2<132::AID-JCC5>3.0.CO;2-P.
  • J. Wang, R.M. Wolf, J.W. Caldwell, P.A. Kollman, and D.A. Case, Development and testing of a general amber force field, J. Comput. Chem. 25 (2004), pp. 1157–1174. doi:10.1002/jcc.20035.
  • J.A. Maier, C. Martinez, K. Kasavajhala, L. Wickstrom, K.E. Hauser, and C. Simmerling, ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB, J. Chem. Theory Comput. 11 (2015), pp. 3696–3713. doi:10.1021/acs.jctc.5b00255.
  • W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, and M.L. Klein, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys. 79 (1983), pp. 926–935. doi:10.1063/1.445869.
  • R. Salomon-Ferrer, A.W. Götz, D. Poole, S. Le Grand, and R.C. Walker, Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle Mesh Ewald, J. Chem. Theory Comput 9 (2013), pp. 3878–3888. doi:10.1021/ct400314y.
  • T.G. Coleman, H.C. Mesick, and R.L. Darby, Numerical integration: A method for improving solution stability in models of the circulation, Ann. Biomed. Eng. 5 (1977), pp. 322–328. doi:10.1007/BF02367312.
  • J.A. Izaguirre, D.P. Catarello, J.M. Wozniak, and R.D. Skeel, Langevin stabilization of molecular dynamics, J. Chem. Phys. 114 (2001), pp. 2090–2098. doi:10.1063/1.1332996.
  • U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, and L.G. Pedersen, A smooth particle mesh Ewald method, J. Chem. Phys. 103 (1995), pp. 8577–8593. doi:10.1063/1.470117.
  • H. Sun, Y. Li, S. Tian, L. Xu, and T. Hou, Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set, Phys. Chem. Chem. Phys. 16 (2014), pp. 16719–11629. doi:10.1039/C4CP01388C.
  • H. Sun, Y. Li, M. Shen, S. Tian, L. Xu, P. Pan, Y. Guan, and T. Hou, Assessing the performance of MM/PBSA and MM/GBSA methods. 5. Improved docking performance using high solute dielectric constant MM/GBSA and MM/PBSA rescoring, Phys. Chem. Chem. Phys. 16 (2014), pp. 22035–22045. doi:10.1039/C4CP03179B.
  • C. Suri and P.K. Naik, Combined molecular dynamics and continuum solvent approaches (MM-PBSA/GBSA) to predict noscapinoid binding to γ-tubulin dimer, SAR QSAR Environ. Res. 26 (2015), pp. 507–519. doi:10.1080/1062936X.2015.1070200.
  • S. Tian, J. Zeng, X. Liu, J. Chen, J.Z.H. Zhang, and T. Zhu, Understanding the selectivity of inhibitors toward PI4KIIIα and PI4KIIIβ based molecular modeling, Phys. Chem. Chem. Phys. 21 (2019), pp. 22103–22112. doi:10.1039/C9CP03598B.
  • W. Wang and P.A. Kollman, Free energy calculations on dimer stability of the HIV protease using molecular dynamics and a continuum solvent model, J. Mol. Biol. 303 (2000), pp. 567–582. doi:10.1006/jmbi.2000.4057.
  • J. Chen, X. Liu, S. Zhang, J. Chen, H. Sun, L. Zhang, and Q. Zhang, Molecular mechanism with regard to the binding selectivity of inhibitors toward FABP5 and FABP7 explored by multiple short molecular dynamics simulations and free energy analyses, Phys. Chem. Chem. Phys. 22 (2020), pp. 2262–2275. doi:10.1039/C9CP05704H.
  • Q. Wang, X. An, J. Xu, Y. Wang, L. Liu, E.L.-H. Leung, and X. Yao, Classical molecular dynamics and metadynamics simulations decipher the mechanism of CBP30 selectively inhibiting CBP/p300 bromodomains, Org. Biomol. Chem. 16 (2018), pp. 6521–6530.
  • Y. Wang, S. Wu, L. Wang, Z. Yang, J. Zhao, and L. Zhang, Binding selectivity of inhibitors toward the first over the second bromodomain of BRD4: Theoretical insights from free energy calculations and multiple short molecular dynamics simulations, RSC Adv. 11 (2021), pp. 745–759. doi:10.1039/D0RA09469B.
  • I. Massova and P.A. Kollman, Computational alanine scanning to probe protein−protein interactions:  A novel approach to evaluate binding free energies, J. Am. Chem. Soc. 121 (1999), pp. 8133–8143. doi:10.1021/ja990935j.
  • Y. Gao, T. Zhu, and J. Chen, Exploring drug-resistant mechanisms of I84V mutation in HIV-1 protease toward different inhibitors by thermodynamics integration and solvated interaction energy method, Chem. Phys. Lett. 706 (2018), pp. 400–408. doi:10.1016/j.cplett.2018.06.040.
  • T. Ichiye and M. Karplus, Collective motions in proteins: A covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations, Proteins 11 (1991), pp. 205–217. doi:10.1002/prot.340110305.
  • J. Chen, W. Wang, L. Pang, and W. Zhu, Unveiling conformational dynamics changes of H-Ras induced by mutations based on accelerated molecular dynamics, Phys. Chem. Chem. Phys. 22 (2020), pp. 21238–21250. doi:10.1039/D0CP03766D.
  • J. Zhao, H. Sun, W. Wang, L. Zhang, and J. Chen, Theoretical insights into mutation-mediated conformational changes of the GNP-bound H-RAS, Chem. Phys. Lett. 759 (2020), pp. 138042. doi:10.1016/j.cplett.2020.138042.
  • M. Laberge and T. Yonetani, Molecular dynamics simulations of hemoglobin A in different states and bound to DPG: Effector-linked perturbation of tertiary conformations and HbA concerted dynamics, Biophys. J. 94 (2008), pp. 2737–2751. doi:10.1529/biophysj.107.114942.
  • J. Su, X. Liu, S. Zhang, F. Yan, Q. Zhang, and J. Chen, A theoretical insight into selectivity of inhibitors toward two domains of bromodomain-containing protein 4 using molecular dynamics simulations, Chem. Biol. Drug Des. 91 (2018), pp. 828–840. doi:10.1111/cbdd.13148.
  • J. Chen, J. Wang, F. Lai, W. Wang, L. Pang, and W. Zhu, Dynamics revelation of conformational changes and binding modes of heat shock protein 90 induced by inhibitor associations, RSC Adv. 8 (2018), pp. 25456–25467. doi:10.1039/C8RA05042B.
  • J. Zhao, B. Yin, H. Sun, L. Pang, and J. Chen, Identifying hot spots of inhibitor-CDK2 bindings by computational alanine scanning, Chem. Phys. Lett. 747 (2020), pp. 137329.
  • W. Humphrey, A. Dalke, and K. Schulten, VMD: Visual molecular dynamics, J. Mol. Graph. 14 (1996), pp. 33–38. doi:10.1016/0263-7855(96)00018-5.
  • J. Chen, J. Wang, Q. Zhang, K. Chen, and W. Zhu, A comparative study of trypsin specificity based on QM/MM molecular dynamics simulation and QM/MM GBSA calculation, J. Biomol. Struct. Dyn. 33 (2015), pp. 2606–2618. doi:10.1080/07391102.2014.1003146.
  • D.S. Goodsell, G.M. Morris, and A.J. Olson, Automated docking of flexible ligands: Applications of AutoDock, J. Mol. Recognit. 9 (1996), pp. 1–5. doi:10.1002/(SICI)1099-1352(199601)9:1<1::AID-JMR241>3.0.CO;2-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.