134
Views
5
CrossRef citations to date
0
Altmetric
Research Article

9-Arylimino noscapinoids as potent tubulin binding anticancer agent: chemical synthesis and cellular evaluation against breast tumour cells

, , , , , & show all
Pages 269-291 | Received 12 Nov 2020, Accepted 14 Feb 2021, Published online: 09 Mar 2021

References

  • M.A. Jordan and L. Wilson, Microtubules as a target for anticancer drugs, Nat. Rev. Cancer 4 (2004), pp. 253–265. doi:10.1038/nrc1317.
  • E.K. Rowinsky, The development and clinical utility of the taxane class of antimicrotubule chemotherapy agents, Annu. Rev. Med. 48 (1997), pp. 353–374. doi:10.1146/annurev.med.48.1.353.
  • J. Crown and M. O’Leary, The taxanes: An update, Lancet 355 (2000), pp. 1176–1178. doi:10.1016/S0140-6736(00)02074-2.
  • C. Theiss and K. Meller, Taxol impairs anterograde axonal transport of microinjected horseradish peroxidase in dorsal root ganglia neurons in vitro, Cell Tissue Res. 299 (2000), pp. 213–224. doi:10.1007/s004419900120.
  • K.S. Topp, K.D. Tanner, and J.D. Levine, Damage to the cytoskeleton of large diameter sensory neurons and myelinated axons in vincristine-induced painful peripheral neuropathy in the rat, J. Comp. Neurol. 424 (2000), pp. 563–576. doi:10.1002/1096-9861(20000904)424:43.0.CO:2-U.
  • K. Ye, Y. Ke, N. Keshava, J. Shanks, J.A. Kapp, R.R. Tekmal, J. Petros, and H.C. Joshi, Opium alkaloid noscapine is an antitumor agent that arrests metaphase and induces apoptosis in dividing cells, Proc. Natl. Acad. Sci. U.S.A. 95 (1998), pp. 1601–1606. doi:10.1073/pnas.95.4.1601.
  • B. Dahlström, T. Mellstrand, C.G. Löfdahl, and M. Johansson, Pharmacokinetic properties of noscapine, Euro. J. Clin. Pharma. 22 (1982), pp. 535–539. doi:10.1007/BF00609627.
  • M.O. Karlsson, B. Dahlstrom, S.A. Eckernas, M. Johansson, and A.T. Alm, Pharmacokinetics of oral noscapine, Eur. J. Clin. Pharmacol. 39 (1990), pp. 275–279. doi:10.1007/BF00315110.
  • L.N. Jensen, L.L. Christrup, L. Jacobsen, J. Bonde, and H. Bundgaard, Relative bioavailability in man of noscapine administered in lozenges and mixture, Acta Pharm. Nord. 4 (1992), pp. 309–312.
  • Y. Ke, K. Ye, H.E. Grossniklaus, D.R. Archer, H.C. Joshi, and J.A. Kapp, Noscapine inhibits tumor growth with little toxicity to normal tissues or inhibition of immune responses, Can. Immunol. Immunother. 49 (2000), pp. 217–225. doi:10.1007/s002620000109.
  • J. Zhou, K. Gupta, S. Aggarwal, R. Aneja, R. Chandra, D. Panda, and H.C. Joshi, Brominated derivatives of noscapine are potent microtubule-interfering agents that perturb mitosis and inhibit cell proliferation, Mol. Pharma. 63 (2003), pp. 799–807. doi:10.1124/mol.63.4.799.
  • J.W. Landen, R. Lang, S.J. McMahon, N.M. Rusan, A.M. Yvon, A.W. Adams, M.D. Sorcinelli, R. Campbell, P. Bonaccorsi, J.C. Ansel, D.R. Archer, P. Wadsworth, C.A. Armstrong, and H.C. Joshi, Noscapine alters microtubule dynamics in living cells and inhibits the progression of melanoma, Can. Res. 62 (2002), pp. 4109–4114.
  • J. Zhou, K. Gupta, J. Yao, K. Ye, D. Panda, P. Giannakakou, and H.C. Joshi, Paclitaxel-resistant human ovarian cancer cells undergo c-Jun NH2-terminal kinase-mediated apoptosis in response to noscapine, J. Biol. Chem. 277 (2002), pp. 39777–39785. doi:10.1074/jbc.M203927200.
  • N.K. Manchukonda, B. Sridhar, P.K. Naik, H.C. Joshi, and S. Kantevari, Copper (I) mediated facile synthesis of potent tubulin polymerization inhibitor, 9-amino-α-noscapine from natural α-noscapine, Bio. Med. Chem. Lett. 22 (2012), pp. 2983–2987. doi:10.1016/j.bmcl.2012.02.033.
  • N.K. Manchukonda, P.K. Naik, S. Santoshi, M. Lopus, S. Joseph, and S. Kantevari, Rational design, synthesis, and biological evaluation of third generation α-noscapine analogues as potent tubulin binding anti-cancer agents, PloS One 8 (2013), pp. e77970. doi:10.1371/journal.pone.0077970.
  • S. Santoshi, P.K. Naik, and H.C. Joshi, Rational design of novel anti-microtubule agent (9-azido-noscapine) from quantitative structure activity relationship (QSAR) evaluation of noscapinoids, J. Biomol. Scr. 16 (2011), pp. 1047–1058. doi:10.1177/1087057111418654.
  • M.A. Oliva, A.E. Prota, J. Rodríguez-Salarichs, Y.L. Bennani, J. Jiménez-Barbero, K. Bargsten, Á. Canales, M.O. Steinmetz, and J.F. Díaz, Structural basis of noscapine activation for tubulin binding, J. Med. Chem. 63 (2020), pp. 8495–8501. doi:10.1021/acs.jmedchem.0c00855.
  • H.J. Berendsen, D. van der Spoel, and R. van Drunen, GROMACS: A message-passing parallel molecular dynamics implementation, Comp. Phys. Comm. 91 (1995), pp. 43–56. doi:10.1016/0010-4655(95)00042-E.
  • S. Santoshi and P.K. Naik, Molecular insight of isotypes specific β-tubulin interaction of tubulin heterodimer with noscapinoids, J. Comp-Aid. Mol. Des. 28 (2014), pp. 751–763. doi:10.1007/s10822-014-9756-9.
  • I. Ali, A. Haque, K. Saleem, and M.F. Hsieh, Curcumin-I Knoevenagel’s condensates and their Schiff’s bases as anticancer agents: Synthesis, pharmacological and simulation studies, Bio-Org. Med. Chem. 21 (2013), pp. 3808–3820. doi:10.1016/j.bmc.2013.04.018.
  • S.M. Sondhi, S. Arya, R. Rani, N. Kumar, and P. Roy, Synthesis, anti-inflammatory and anticancer activity evaluation of some mono-and bis-Schiff’s bases, Med Chem Res. 21 (2012), pp. 3620–3628. doi:10.1007/s00044-011-9899-3.
  • S. Santoshi, N.K. Manchukonda, C. Suri, M. Sharma, B. Sridhar, S. Joseph, M. Lopus, S. Kantevari, I. Baitharu, and P.K. Naik, Rational design of biaryl pharmacophore inserted noscapine derivatives as potent tubulin binding anticancer agents, J. Comp-Aid. Mol. Des. 29 (2015), pp. 249–270. doi:10.1007/s10822-014-9820-5.
  • P.K. Naik, B.P. Chatterji, S.N. Vangapandu, R. Aneja, R. Chandra, S. Kanteveri, and H.C. Joshi, Rational design, synthesis and biological evaluations of amino-noscapine: A high affinity tubulin-binding noscapinoid, J. Comp-Aid. Mol. Des. 25 (2011), pp. 443–454. doi:10.1016/j.jmgm.2011.03.004.
  • R. Aneja, S.N. Vangapandu, M. Lopus, R. Cha.ndra, D. Panda, and H.C. Joshi, Development of a novel nitro-derivative of noscapine for the potential treatment of drug-resistant ovarian cancer and T-cell lymphoma, Mol. Pharm. 69 (2006), pp. 1801–1809. doi:10.1124/mol.105.021899.
  • R.A. Friesner, J.L. Banks, R.B. Murphy, T.A. Halgren, J.J. Klicic, D.T. Mainz, M.P. Repasky, E.H. Knoll, M. Shelley, J.K. Perry, D.E. Shaw, P. Francis, and P.S. Shenkin, Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy, J. Med. Chem. 47 (2004), pp. 1739–1749. doi:10.1021/jm0306430.
  • T.A. Halgren, R.B. Murphy, R.A. Friesner, H.S. Beard, L.L. Frye, W.T. Pollard, and J.L. Banks, Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening, J. Med. Chem. 47 (2004), pp. 1750–1759. doi:10.1021/jm030644s.
  • R. Zhou, R.A. Friesner, A. Ghosh, R.C. Rizzo, W.L. Jorgensen, and R.M. Levy, New linear interaction method for binding affinity calculations using a continuum solvent model, J. Phys. Chem. 105 (2001), pp. 10388–10397. doi:10.1021/jp011480z.
  • D.A. Case, R.M. Betz, D.S. Cerutti, T.E. Cheatham III, T.A. Darden, R.E. Duke, T.J. Giese, H. Gohlke, A.W. Goetz, N. Homeyer, S. Izadi, P. Janowski, J. Kaus, A. Kovalenko, T.S. Lee, S. LeGrand, P. Li, C. Lin, T. Luchko, R. Luo, B. Madej, D. Mermelstein, K.M. Merz, G. Monard, H. Nguyen, H.T. Nguyen, I. Omelyan, A. Onufriev, D.R. Roe, A. Roitberg, C. Sagui, C.L. Simmerling, W. Botello-Smith, J. Swails, R.C. Walker, J. Wang, R.M. Wolf, X. Wu, L. Xiao, and P.A. Kollman, Amber 2016, Univ. Cal. San Franc, 2016.
  • J. Wang, W. Wang, P.A. Kollman, and D.A. Case, Automatic atom type and bond type perception in molecular mechanical calculations, J. Mol. Graph. Model. 25 (2006), pp. 247–260. doi:10.1016/j.jmgm.2005.12.005.
  • A. Jakalian, D.B. Jack, and C.I. Bayly, Fast, efficient generation of high quality atomic charges. AM1-BCC model: II. Parameterization and validation, J. Comp. Chem. 23 (2002), pp. 1623–1641. doi:10.1002/jcc.10128.
  • W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, and M.L. Klein, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys. 79 (1983), pp. 926–935. doi:10.1063/1.445869.
  • J.P. Ryckaert, G. Ciccotti, and H.J. Berendsen, Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n- alkanes, J. Comp. Phys. 23 (1977), pp. 327–341. doi:10.1016/0021-9991(77)90098-5.
  • T. Darden, D. York, and L. Pedersen, Particle mesh Ewald: An N. log (N) method for Ewald sums in large systems, J. Chem. Phys. 98 (1993), pp. 10089–10092. doi:10.1063/1.464397.
  • U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, and L.G. Pedersen, A smooth particle mesh Ewald method, J. Chem. Phys. 103 (1995), pp. 8577–8593. doi:10.1063/1.470117.
  • P.A. Kollman, I. Massova, C. Reyes, B. Kuhn, S. Huo, L. Chong, M. Lee, T. Lee, Y. Duan, and W. Wang, Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models, Acc. Chem. Res. 33 (2000), pp. 889–897. doi:10.1021/ar000033j.
  • E. Hamel and C.M. Lin, Glutamate-induced polymerization of tubulin: Characteristics of the reaction and application to the large scale purification of tubulin, Arch. Biochem. Biophys. 209 (1981), pp. 29–40. doi:10.1016/0003-9861(81)90253-8.
  • D. Panda, G. Chakrabarti, J. Hudson, K. Pigg, H.P. Miller, L. Wilson, and R.H. Himes, Suppression of microtubule dynamic instability and treadmilling by deuterium oxide, J. Biochem. 39 (2000), pp. 5075–5081. doi:10.1021/bi992217f.
  • M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72 (1976), pp. 248–254. doi:10.1016/0003-2697(76)90527-3.
  • P.K. Naik, M. Lopus, R. Aneja, S.N. Vangapandu, and H.C. Joshi, In silico inspired design and synthesis of a novel tubulin-binding anti-cancer drug: Folate conjugated noscapine (Targetin), J. Comp-Aid. Mol. Des. 26 (2012), pp. 233–247. doi:10.1007/s10822-011-9508-z.
  • R. Aneja, S.N. Vangapandu, M. Lopus, V.G. Viswesarappa, N. Dhiman, A. Verma, R. Chandra, D. Panda, and H.C. Joshi, Synthesis of microtubule-interfering halogenated noscapine analogs that perturb mitosis in cancer cells followed by cell death, Biochem. Pharm. 72 (2006b), pp. 415–426. doi:10.1016/j.bcp.2006.05.004.
  • N. Jain, D. Yada, T.B. Shaik, G. Vasantha, P.S. Reddy, S.V. Kalivendi, and B. Sreedhar, Synthesis and antitumor evaluation of nitrovinyl biphenyls: Anticancer agents based on allocolchicines, Chem. Med. Chem. 6 (2011), pp. 859–868. doi:10.1002/cmdc.201100019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.