319
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Robust classification-based molecular modelling of diverse chemical entities as potential SARS-CoV-2 3CLpro inhibitors: theoretical justification in light of experimental evidences

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 473-493 | Received 31 Jan 2021, Accepted 06 Apr 2021, Published online: 20 May 2021

References

  • N. Zhu, D. Zhang, W. Wang, X. Li, B. Yang, J. Song, X. Zhao, B. Huang, W. Shi, R. Lu, and P. Niu, A novel coronavirus from patients with pneumonia in China 2019, N. Engl. J. Med. 382 (2020), pp. 727–733. doi:10.1056/NEJMoa2001017.
  • C. Wang, P.W. Horby, F.G. Hayden, and G.F. Gao, A novel coronavirus outbreak of global health concern, Lancet 395 (2020), pp. 470–743. doi:10.1016/S0140-6736(20)30185-9.
  • F. Wu, S. Zhao, B. Yu, Y.M. Chen, W. Wang, Z.G. Song, Y. Hu, Z.W. Tao, J.H. Tian, Y.Y. Pei, and M.L. Yuan, A new coronavirus associated with human respiratory disease in China, Nature 579 (2020), pp. 265–269. doi:10.1038/s41586-020-2008-3.
  • S. Ullrich and C. Nitsche, The SARS-CoV-2 main protease as drug target, Bioorg. Med. Chem. Lett. 30 (2020), pp. 127377. doi:10.1016/j.bmcl.2020.127377.
  • N. Adhikari, S.A. Amin, and T. Jha, Dissecting the drug development strategies against SARS-CoV-2 through diverse computational modeling techniques, in Methods in Pharmacology and Toxicology, K. Roy, ed., Springer, New York, 2020, pp. 1–103. doi:10.1007/7653_2020_46.
  • I. Chakraborty and P. Maity, COVID-19 outbreak: Migration, effects on society, global environment and prevention, Sci. Tot. Environ. 22 (2020), pp. 138882. doi:10.1016/j.scitotenv.2020.138882.
  • (2021). Available at https://www.worldometers.info/coronavirus/.
  • A. Wilder-Smith and D.O. Freedman, Isolation, quarantine, social distancing and community containment: Pivotal role for old-style public health measures in the novel coronavirus (2019-nCoV) outbreak, J. Travel. Med. 27 (2020), pp. taaa020. doi:10.1093/jtm/taaa020.
  • V. Khosrawipour, H. Lau, T. Khosrawipour, P. Kocbach, H. Ichii, H. Ichii, J. Bania, and A. Mikolajczyk, Failure in initial stage containment of global COVID-19 epicenters, J. Med. Virol. 92 (2020), pp. 863–867. doi:10.1002/jmv.25883.
  • V.G. Da Costa, M.L. Moreli, and M.V. Saivish, The emergence of SARS, MERS and novel SARS-2 coronaviruses in the 21st century, Arch. Virol. 165 (2020), pp. 1517–1526. doi:10.1007/s00705-020-04628-0.
  • Y. Yang, F. Peng, R. Wang, K. Guan, T. Jiang, G. Xu, J. Sun, and C. Chang, The deadly coronaviruses: The 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China, J. Autoimmun. 109 (2020), pp. 102434. doi:10.1016/j.jaut.2020.102434.
  • Z. Song, Y. Xu, L. Bao, L. Zhang, P. Yu, Y. Qu, H. Zhu, W. Zhao, Y. Han, and C. Qin, From SARS to MERS: Thrusting coronaviruses into the spotlight, Viruses 11 (2019), pp. 59. doi:10.3390/v11010059.
  • A.E. Gorbalenya, S.C. Baker, R.S. Baric, R.J. Groot, C. Drosten, A.A. Gulyaeva, B.L. Haagmans, C. Lauber, A.M. Leontovich, B.W. Neuman, and D. Penzar, The species severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2, Nat. Microbiol. 5 (2020), pp. 536–544.
  • D.E. Gordon, G.M. Jang, M. Bouhaddou, J. Xu, K. Obernier, K.M. White, M.J. O’Meara, V.V. Rezelj, J.Z. Guo, D.L. Swaney, and T.A. Tummino, A SARS-CoV-2 protein interaction map reveals targets for drug repurposing, Nature 583 (2020), pp. 459–468. doi:10.1038/s41586-020-2286-9.
  • Y. Chen, Q. Liu, and D. Guo, Emerging coronaviruses: Genome structure, replication, and pathogenesis, J. Med. Virol. 92 (2020), pp. 418–423. doi:10.1002/jmv.25681.
  • R.A. Khailany, M. Safdar, and M. Ozaslan, Genomic characterization of a novel SARS-CoV- 2, Gene. Rep. 19 (2020), pp. 100682. doi:10.1016/j.genrep.2020.100682.
  • H. Yang, M. Yang, Y. Ding, Y. Liu, Z. Lou, Z. Zhou, L. Sun, L. Mo, S. Ye, H. Pang, and G.F. Gao, The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor, Proc. Natl. Acad. Sci. 100 (2003), pp. 13190–13195. doi:10.1073/pnas.1835675100.
  • C. Wu, Y. Liu, Y. Yang, P. Zhang, W. Zhong, Y. Wang, Q. Wang, Y. Xu, M. Li, X. Li, and M. Zheng, Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, Acta. Pharm. Sinica B 10 (2020), pp. 766–788. doi:10.1016/j.apsb.2020.02.008.
  • A. Zumla, J.F. Chan, E.I. Azhar, D.S. Hui, and K.Y. Yuen, Coronaviruses – drug discovery and therapeutic options, Nat. Rev. Drug Discov. 15 (2016), pp. 327–347.
  • K. Anand, J. Ziebuhr, P. Wadhwani, J.R. Mesters, and R. Hilgenfeld, Coronavirus main protease (3CLpro) structure: Basis for design of anti-SARS drugs, Science 300 (2003), pp. 1763–1767. doi:10.1126/science.1085658.
  • A. Sternberg, D.L. McKee, and C. Naujokat, Novel drugs targeting the SARS-CoV-2/COVID-19 machinery, Curr. Top. Med. Chem. 20 (2020), pp. 1–11. doi:10.2174/1568026620999200517043137.
  • N. Adhikari, S.K. Baidya, A. Saha, and T. Jha, Structural insight into the viral 3C-like protease inhibitors: Comparative SAR/QSAR approaches, in Viral Proteases and Their Inhibitors, S.P. Gupta, ed., Academic Press, London, 2017, pp. 317–409.
  • M. Stoermer, Homology models of coronavirus 2019-nCoV 3CLpro protease, Chemrxiv 11637294 (2020), 530 pp. v3. doi:10.26434/chemrxiv.11637294.v3.
  • T. Zhang, Q. Wu, and Z. Zhang, Probable pangolin origin of SARS-CoV-2 Associated with the COVID-19 outbreak, Curr. Biol. 30 (2020), pp. 1346–1351. doi:10.1016/j.cub.2020.03.022.
  • A.A. Rabaan, S.H. Al-Ahmed, S. Haque, R. Sah, R. Tiwari, Y.S. Malik, K. Dhama, M.I. Yatoo, D.K. Bonilla-Aldana, and A.J. Rodriguez-Morales, SARS-CoV-2, SARS-CoV, and MERS-COV: A comparative overview, InfezMed 28 (2020), pp. 174–184.
  • M.M. Hatmal, W. Alshaer, M.A.I. Al-Hatamleh, M. Hatmal, O. Smadi, M.O. Taha, A.J. Oweida, J.C. Boer, R. Mohamud, and M. Plebanski, Comprehensive structural and molecular comparison of spike proteins of SARS-CoV-2, SARS-CoV and MERS-CoV, and their interactions with ACE2, Cells 9 (2020), pp. 2638. doi:10.3390/cells9122638.
  • M. Kandeel and M. Al-Nazawi, Virtual screening and repurposing of FDA approved drugs against COVID-19 main protease, Life Sci. 251 (2020), pp. 117627. doi:10.1016/j.lfs.2020.117627.
  • A.B. Gurung, M.A. Ali, J. Lee, M.A. Farah, and K.M. Al-Anazi, Unravelling lead antiviral phytochemicals for the inhibition of SARS-CoV-2 M pro enzyme through in silico approach, Life Sci. 255 (2020), pp. 117831. doi:10.1016/j.lfs.2020.117831.
  • A.A. Elfiky, Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study, Life Sci. 253 (2020), pp. 117592. doi:10.1016/j.lfs.2020.117592.
  • M.T. Qamar, S.M. Alqahtani, M.A. Alamri, and L.L. Chen, Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants, J. Pharm. Anal. 10 (2020), pp. 313–319. doi:10.1016/j.jpha.2020.03.009.
  • Q. Li and C. Kang, Progress in developing inhibitors of SARS-CoV-2 3C-like protease, Microorganisms 8 (2020), pp. 1250. doi:10.3390/microorganisms8081250.
  • S.A. Amin, S. Banerjee, K. Ghosh, S. Gayen, and T. Jha, Protease targeted COVID-19 drug discovery and its challenges: Insight into viral main protease (Mpro) and papain-like protease (PLpro) inhibitors, Bioorg. Med. Chem. 29 (2020), pp. 115860. doi:10.1016/j.bmc.2020.115860.
  • S.A. Amin and T. Jha, Fight against novel coronavirus: A perspective of medicinal chemists, Eur. J. Med. Chem. 201 (2020), pp. 112559. doi:10.1016/j.ejmech.2020.112559.
  • S.A. Amin, S. Banerjee, S. Gayen, and T. Jha, Protease targeted COVID-19 drug discovery: What we have learned from the past SARS-CoV inhibitors? Eur. J. Med. Chem. 215 (2021), pp. 113294. doi:10.1016/j.ejmech.2021.113294.
  • H.C. Hung, Y.Y. Ke, S.Y. Huang, P.N. Huang, Y.A. Kung, T.Y. Chang, K.J. Yen, T.T. Peng, S.E. Chang, C.T. Huang, and Y.R. Tsai, Discovery of M protease inhibitors encoded by SARS-CoV-2, Antimicrob. Agents Chemother. 64 (2020), pp. e00872–20. doi:10.1128/AAC.00872-20.
  • L. Zhang, D. Lin, Y. Kusov, Y. Nian, Q. Ma, J. Wang, A. Von Brunn, P. Leyssen, K. Lanko, J. Neyts, and A. De Wilde, α-Ketoamides as broad-spectrum inhibitors of coronavirus and enterovirus replication: Structure-based design, synthesis, and activity assessment, J. Med. Chem. 63 (2020), pp. 4562–4578. doi:10.1021/acs.jmedchem.9b01828.
  • L. Zhang, D. Lin, X. Sun, U. Curth, C. Drosten, L. Sauerhering, S. Becker, K. Rox, and R. Hilgenfeld, Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors, Science 368 (2020), pp. 409–412. doi:10.1126/science.abb3405.
  • K. Roy, S. Kar, and R.N. Das, A Primer on QSAR/QSPR Modeling: Fundamental Concepts, Springer, New York, 2015.
  • S. Chtita, A. Belhassan, M. Bakhouch, A.I. Taourati, A. Aouidate, S. Belaidi, M. Moutaabbid, S. Belaaouad, M. Bouachrine, and T. Lakhlifi, QSAR study of unsymmetrical aromatic disulfides as potent avian SARS-CoV main protease inhibitors using quantum chemical descriptors and statistical methods, Chemom. Intell. Lab. Syst. 210 (2021), pp. 104266. doi:10.1016/j.chemolab.2021.104266.
  • V.M. Alves, T. Bobrowski, C.C. Melo-Filho, D. Korn, S. Auerbach, C. Schmitt, E.N. Muratov, and A. Tropsha, QSAR Modeling of SARS-CoV Mpro inhibitors identifies sufugolix, cenicriviroc, proglumetacin, and other drugs as candidates for repurposing against SARS-CoV-2, Mol. Inf. 40 (2021), pp. e2000113. doi:10.1002/minf.202000113.
  • V.H. Masand, V. Rastija, M.K. Patil, A. Gandhi, and A. Chapolikar, Extending the identification of structural features responsible for anti-SARS-CoV activity of peptide-type compounds using QSAR modeling, SAR QSAR Environ. Res. 31 (2020), pp. 643–654. doi:10.1080/1062936X.2020.1784271.
  • V.H. Masand, S. Akasapu, A. Gandhi, V. Rastija, and M.K. Patil, Structure features of peptide-type SARS-CoV main protease inhibitors: Quantitative structure activity relationship study, Chemom. Intell. Lab. Syst. 206 (2020), pp. 104172. doi:10.1016/j.chemolab.2020.104172.
  • V. Kumar and K. Roy, Development of a simple, interpretable and easily transferable QSAR model for quick screening antiviral databases in search of novel 3C-like protease (3CLpro) enzyme inhibitors against SARS-CoV diseases, SAR QSAR Environ. Res. 31 (2020), pp. 511–526. doi:10.1080/1062936X.2020.1776388.
  • K. Ghosh, S.A. Amin, S. Gayen, and T. Jha, Chemical-informatics approach to COVID-19 drug discovery: Exploration of important fragments and data mining based prediction of some hits from natural origins as main protease (Mpro) inhibitors, J. Mol. Struct. 1224 (2020), pp. 129026. doi:10.1016/j.molstruc.2020.129026.
  • S.A. Amin, K. Ghosh, S. Gayen, and T. Jha, Chemical-informatics approach to COVID-19 drug discovery: Monte Carlo based QSAR, virtual screening and molecular docking study of some in-house molecules as papain-like protease (PLpro) inhibitors, J. Biomol. Struct. Dyn. In Press (2020), pp. 1–10. doi:10.1080/07391102.2020.1780946
  • S.A. Amin, S. Banerjee, S. Singh, I.A. Qureshi, S. Gayen, and T. Jha, First structure-activity relationship analysis of SARS-CoV-2 virus main protease (Mpro) inhibitors: An endeavor on COVID-19 drug discovery, Mol. Divers. In press (2020). doi:10.1007/s11030-020-10166-3
  • S.A. Amin, K. Ghosh, S. Singh, I.A. Qureshi, T. Jha, and S. Gayen, Exploring naphthyl derivatives as SARS-CoV papain-like protease (PLpro) inhibitors and its implications in COVID-19 drug discovery, Mol. Divers. (2021). doi:10.1007/s11030-021-10198-3.
  • C. Ma, M.D. Sacco, B. Hurst, J.A. Townsend, Y. Hu, T. Szeto, X. Zhang, B. Tarbet, M.T. Marty, Y. Chen, and J. Wang, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease, bioRxiv 30 (2020), pp. 678–692.
  • Z. Jin, X. Du, Y. Xu, Y. Deng, M. Liu, Y. Zhao, B. Zhang, X. Li, L. Zhang, C. Peng, and Y. Duan, Structure of M pro from SARS-CoV-2 and discovery of its inhibitors, Nature 582 (2020), pp. 289–293. doi:10.1038/s41586-020-2223-y.
  • M.D. Sacco, C. Ma, P. Lagarias, A. Gao, J.A. Townsend, X. Meng, P. Dube, X. Zhang, Y. Hu, N. Kitamura, and B. Hurst, Structure and inhibition of the SARS-CoV-2 main protease reveals strategy for developing dual inhibitors against M pro and cathepsin L, Sci. Adv. 6 (2020), pp. eabe0751. doi:10.1126/sciadv.abe0751.
  • W. Dai, B. Zhang, X.M. Jiang, H. Su, J. Li, Y. Zhao, X. Xie, Z. Jin, J. Peng, F. Liu, and C. Li, Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease, Science 368 (2020), pp. 1331–1335. doi:10.1126/science.abb4489.
  • W. Vuong, M.B. Khan, C. Fischer, E. Arutyunova, T. Lamer, J. Shields, H.A. Saffran, R.T. McKay, M.J. Van Belkum, M. Joyce, and H.S. Young, Feline coronavirus drug inhibits the main protease of SARS-CoV-2 and blocks virus replication, Nat. Commun. 11 (2020), pp. 4282. doi:10.1038/s41467-020-18096-2.
  • A.D. Rathnayake, J. Zheng, Y. Kim, K.D. Perera, S. Mackin, D.K. Meyerholz, M.M. Kashipathy, K.P. Battaile, S. Lovell, S. Perlman, and W.C. Groutas, 3C-like protease inhibitors block coronavirus replication in vitro and improve survival in MERS-CoV-infected mice, Sci. Transl. Med. 12 (2020), pp. eabc5332. doi:10.1126/scitranslmed.abc5332.
  • W. Zhu, M. Xu, C.Z. Chen, H. Guo, M. Shen, X. Hu, P. Shinn, C. Klumpp-Thomas, S.G. Michael, and W. Zheng, Identification of SARS-CoV-2 3CL protease inhibitors by a quantitative high-throughput screening, ACS Pharmacol. Transl. Sci. 3 (2020), pp. 1008–1016. doi:10.1021/acsptsci.0c00108.
  • H. Su, S. Yao, W. Zhao, M. Li, J. Liu, W. Shang, H. Xie, C. Ke, M. Gao, K. Yu, and H. Liu, Discovery of baicalin and baicalein as novel, natural product inhibitors of SARS-CoV-2 3CL protease in vitro, bioRxiv (2020). doi:10.1101/2020.04.13.038687.
  • Discovery Studio 3.0. Accelrys Inc., San Diego, USA 2011. Available at http://www.accelrys.com.
  • C.W. Yap, PaDEL descriptor: An open source software to calculate molecular descriptors and fingerprints, J. Comput. Chem. 32 (2011), pp. 1466–1474. doi:10.1002/jcc.21707.
  • The simple, user-friendly and reliable online standalone tools freely. Available at http://teqip.jdvu.ac.in/QSAR_Tools/.
  • Statistica 7.1, StatSoft Inc. 2300 East 14th Street Tulsa, OK 74104, United States.
  • H. Yang, J. Li, Z. Wu, W. Li, G. Liu, and Y. Tang, Evaluation of different methods for identification of structural alerts using chemical Ames mutagenicity data set as a benchmark, Chem. Res. Toxicol. 30 (2017), pp. 1355–1364. doi:10.1021/acs.chemrestox.7b00083.
  • T. Ferrari, D. Cattaneo, G. Gini, N.G. Bakhtyari, A. Manganaro, and E. Benfenati, Automatic knowledge extraction from chemical structures: The case of mutagenicity prediction, SAR QSAR Environ. Res. 24 (2013), pp. 365–383. doi:10.1080/1062936X.2013.773376.
  • L. Chen, Y. Li, Q. Zhao, H. Peng, and T. Hou, ADME evaluation in drug discovery. 10. Predictions of P-glycoprotein inhibitors using recursive partitioning and naive Bayesian classification techniques, Mol. Pharm. 8 (2011), pp. 889–900. doi:10.1021/mp100465q.
  • S. Banerjee, S.A. Amin, N. Adhikari, and T. Jha, Essential elements regulating HDAC8 inhibition: A classification based structural analysis and enzyme-inhibitor interaction study of hydroxamate based HDAC8 inhibitors, J. Biomol. Struct. Dyn. 38 (2020), pp. 5513–5525. doi:10.1080/07391102.2019.1704881.
  • N. Adhikari, A.K. Halder, A. Saha, K.D. Saha, and T. Jha, Structural findings of phenylindoles as cytotoxic antimitotic agents in human breast cancer cell lines through multiple validated QSAR studies, Toxicol. In Vitro 29 (2015), pp. 1392–1404. doi:10.1016/j.tiv.2015.05.017.
  • T. Fawcett, An introduction to ROC analysis, Pat. Recog. Let. 27 (2006), pp. 861–874. doi:10.1016/j.patrec.2005.10.010.
  • K. Roy and R.N. Das, QSTR with extended topochemical atom (ETA) indices. 16. Development of predictive classification and regression models for toxicity of ionic liquids towards Daphnia magna, J. Hazard. Mater. 254 (2013), pp. 166–178. doi:10.1016/j.jhazmat.2013.03.023.
  • A. Pérez-Garrido, A.M. Helguera, F. Borges, M.N. Cordeiro, V. Rivero, and A.G. Escudero, Two new parameters based on distances in a receiver operating characteristic chart for the selection of classification models, J. Chem. Inf. Model. 51 (2011), pp. 2746–2759. doi:10.1021/ci2003076.
  • A. Pérez-Garrido, A.M. Helguera, G.C. López, M.N. Cordeiro, and A.G. Escudero, A topological substructural molecular design approach for predicting mutagenesis end-points of α, β-unsaturated carbonyl compounds, Toxicology 268 (2010), pp. 64–77. doi:10.1016/j.tox.2009.11.023.
  • M.T. Ibrahim, A. Uzairu, S. Uba, and G.A. Shallangwa, Computational modeling of novel quinazoline derivatives as potent epidermal growth factor receptor inhibitors, Heliyon 6 (2020), pp. e03289. doi:10.1016/j.heliyon.2020.e03289.
  • B.A. Thurston and A.L. Ferguson, Machine learning and molecular design of self-assembling π-conjugated oligopeptides, Mol. Simul. 44 (2018), pp. 930–945. doi:10.1080/08927022.2018.1469754.
  • K. Roy and H. Kabir, QSPR with extended topochemical atom (ETA) indices: Modeling of critical micelle concentration of non-ionic surfactants, Chem. Eng. Sci. 73 (2012), pp. 86–98. doi:10.1016/j.ces.2012.01.005.
  • L.H. Hall and L.B. Kier, Electrotopological state indices for atom types: A novel combination of electronic, topological, and valence state information, J. Chem. Inf. Comput. Sci. 35 (1995), pp. 1039–1045. doi:10.1021/ci00028a014.
  • P. Gramatica, M. Corradi, and V. Consonni, Modelling and prediction of soil sorption coefficients of non-ionic organic pesticides by molecular descriptors, Chemosphere 41 (2000), pp. 763–777. doi:10.1016/S0045-6535(99)00463-4.
  • K. Khan and K. Roy, Ecotoxicological modelling of cosmetics for aquatic organisms: A QSTR approach, SAR QSAR Environ. Res. 28 (2017), pp. 567–594. doi:10.1080/1062936X.2017.1352621.
  • K. Roy and G. Ghosh, QSTR with extended topochemical atom indices. 2. Fish toxicity of substituted benzenes, J. Chem. Inf. Comput. Sci. 44 (2004), pp. 559–567. doi:10.1021/ci0342066.
  • K. Roy and R.N. Das, On some novel Extended Topochemical Atom (ETA) parameters for effective encoding of chemical information and modelling of fundamental physicochemical properties, SAR QSAR Environ. Res. 22 (2011), pp. 451–472. doi:10.1080/1062936X.2011.569900.
  • R. Todeschini and V. Consonni, Molecular Descriptors for Chemoinformatics Vol. I, John Wiley & Sons, New York, 2009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.